Тарельчатые контактные устройства
К настоящему времени в промышленности разработаны и используются десятки конструкций контактных устройств, отличающихся по своим характеристикам и технико-экономическим показателям. Наряду с тарелками первого поколения (колпачковые, желобчатые), которые до сих пор эксплуатируются на старых производствах, широкое распространение на установках АВТ получили S-образные, клапанные (пластинчатые, дисковые, …) и другие типы КУ. Нередки случаи, когда в одной колонне в разных секциях используются тарелки разных типов. Это объясняется тем, что паровые и жидкостные нагрузки по высоте нефтяных колонн, особенно работающих с боковыми отборами, существенно различаются (иногда на порядок). При сравнении контактных устройств различного типа в качестве основных обычно выступают следующие показатели:
· Производительность.
· Гидравлическое сопротивление.
· Эффективность (коэффициент полезного действия) – характеризует степень приближения реального процесса разделения на тарелке к теоретически достижимому (теоретическая тарелка).
· Допустимый диапазон варьирования рабочих нагрузок (и по пару, и по жидкости), который определяется отношением максимально допустимой нагрузки к минимально допустимой.
· Градиент уровня жидкости по ширине полотна тарелки, который определяется тем обстоятельством, что жидкость на тарелку вводится с одного края тарелки (секции), а отводится с другого. При течении жидкости по полотну тарелки она преодолевает определенное гидравлическое сопротивление, поэтому высота слоя жидкости у приемного кармана превышает соответствующий уровень у сливного кармана. Наличие градиента приводит к нарушению равномерности распределения пара по ширине барботажного слоя и в итоге – к снижению эффективности КУ.
· Высота межтарельчатого расстояния, которая должна обеспечивать нормальную работу гидравлического затвора для обеспечения гарантированного перетока жидкости с верхней тарелки на нижнюю.
· Обеспечение длительной работоспособности при работе на загрязненных средах и средах, склонных к образованию смолистых или других отложений.
· Металлоемкость.
· Стоимость.
· Удобство монтажа и ремонта, простота конструкции.
Для сложных колонн, работающих с выносными холодными циркуляционными орошениями, к которым относятся и колонны АВТ, весьма важной становится ещё одна специфическая характеристика: величина реализуемого теплосъема от внутреннего парового потока холодным орошением - , (кВт/м3). В этой характеристике величина достигаемого теплосъема отнесена к 1 м3 барботажного слоя или к 1 м3 насадки. В отечественной литературе данная характеристика учитывается достаточно редко, хотя она в значительной мере определяет эффективность работы циркуляционных орошений.
Количество тепла, отводимого от циркуляционного орошения во внешнем теплообменнике, определяется как
. | (3.1) |
Все это количество тепла затрачивается внутри колонны на конденсацию части парового орошения, а энтальпия жидкого потока достигает при этом значения Hн. В процедуре технологического расчета, который, как правило, проводится по «теоретическим тарелкам» процесс теплообмена будет завершен на первом же КУ. Фактически же именно реальная эффективность процесса теплосъема на КУ будет определять, на скольких реальных тарелках будет завершен этот процесс.
Конструкции КУ, выигрывающей у всех остальных конструкций по всем показателям, не существует. Каждая из конструкций обладает своими преимуществами и недостатками и своей областью рационального использования. В зависимости от особенностей конкретного процесса наибольшее значение могут приобретать те или иные характеристики из вышеперечисленных. Так, на выбор КУ для колонн атмосферного блока наибольшее влияние оказывают показатели производительности, эффективности и допустимого значения диапазона рабочих нагрузок, в котором обеспечивается высокая эффективность работы тарелок. Для колонн вакуумного блока на первое место выдвигается гидравлическое сопротивление КУ, поскольку оно будет определять интенсивность процесса разложения тяжелых углеводородов в зоне нагрева, а значит, в значительной мере и качество товарных фракций, хотя и в этом случае должны, конечно, учитываться и остальные характеристики. Наиболее распространенные типы КУ приведены на рисунке 3.1 [5].
В атмосферных колоннах хорошо зарекомендовали себя различные модификации клапанных КУ с дисковыми, прямоугольными и трапециевидными клапанами, а также комбинированные S-образные тарелки с клапанами. В вакуумных колоннах представляет интерес использование дисковых клапанов эжекционного типа, которые характеризуются наименьшим гидравлическим сопротивлением среди всех типов КУ.
Рис. 3.1. Распространенные типы колпачков и клапанов:
колпачки: а – круглый; б – шестигранный; в – прямоугольный;
г – желобчатый; д – S-образный; клапаны: е – прямоугольный; ж – круглый с нижним ограничителем; з – круглый с верхним ограничителем;
и – балластный; к – дисковый эжекционный перекрестноточный;
л – пластинчатый перекрестно-прямоточный; м – S-образный колпачок с клапаном. Обозначения: 1 – диск тарелки; 2 – клапан; 3 – ограничитель;
4 – балласт
Для организации перелива рабочей жидкости с вышележащей тарелки на нижележащую в КУ используются специальные переливные устройства, включающие в себя сливную перегородку и карман (рис. 3.2). При больших значениях удельных нагрузок по жидкости (измеряется через расход фазы – м3/час отнесенный к 1 м2 сечения колонны или к 1 м длины сливной перегородки), что характерно для многотоннажных колонн установок АТ-АВТ, для снижения градиента уровня жидкости применяются многопоточные конструкции КУ (от 2-х до 4-х потоков). Сливные карманы могут быть использованы также для подвода на КУ промежуточных потоков (холодные орошения) и/или для отвода боковых отборов (рис. 3.3). В последнем случае объемная емкость кармана наращивается за счет увеличения межтарельчатого расстояния, что повышает надежность работы откачивающего насоса.
Рис. 3.2. Устройство узлов перетока жидкости с тарелки на тарелку и ввода орошений для однопоточных (а) и двухпоточных (б) тарелок: 1 – корпус колонны; 2 – секции тарелок; 3, 4 – коллекторы ввода жидкости на верхнюю и промежуточную тарелки; 5, 6 – сливные карманы
Массо – теплообмен между взаимодействующими фазами (пар – жидкость) протекает на КУ в барботажном слое: структуре, которая образуется при истечении парового потока из небольших отверстий или щелей, выполненных в полотне тарелки или в специальных устройствах (колпачках), в слой жидкости под небольшим избыточным давлением. Эта структура представляет собой ансамбль пузырьков, размер которых измеряется миллиметрами. Паровые пузырьки зарождаются при истечении газа, всплывают в слое жидкости за счет разности плотностей жидкой и паровой фаз и разрушаются на верхней границе барботажного слоя. Размер пузырьков определяется свойствами паровой и жидкой фаз (плотность, вязкость, поверхностное натяжение, …), конструкцией КУ и гидродинамическими условиями взаимодействия фаз. Суммарная поверхность массообмена в барботажном слое измеряется десятками и даже сотнями м2 поверхности, приходящихся на 1 м3 объема барботажного слоя.
Рис. 3.3. Узлы вывода боковых погонов (жидкость) из колонны: 1 – корпус колонны; 2 – тарелки; 3 – сливной карман увеличенного размера; 4 – сборная (глухая) тарелка; 5, 6 – патрубки для прохода паров и отвода жидкости;
7 – уравнительная труба
Рассмотренные типы контактных устройств относятся к наиболее распространенным для условий работы блоков АТ-АВТ. К настоящему времени разработаны и другие эффективные конструкции КУ [6-10], которые могут представлять интерес при решении задач проектирования. Надо при этом отметить, что какой-либо универсальной конструкции, пригодной для любых условий эксплуатации, выделить нельзя. Каждая конкретная задача проектирования должна решаться с учетом технологии производства на основе обобщения опыта работы родственных установок.