Рекомендации и примеры по проектированию деревянных конструкций 2 страница

γ = 2(h/h0 - 1) = 2(159,8/115,6 - 1) = 0,765;

m1 = m4 = P1/(ql) = P4/(ql) = 7,4/(14,8×18) = 0,028;

m2 = m3 = P2/(ql) = 27,4/(14,8×18) = 0,103;

A = 0,5 + m2 - α(m1 + m2 - m3 - m4) - αк(m2 - m3) = 0,5 + m2 = 0,5 + 0,103 = 0,603.

рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru

Рис. 31. Расчетная схема дощатоклеенной балки покрытия с подвесным оборудованием

Вычислим вначале K0, предполагая, что расчетное сечение находится на участке между торцом балки и силой P1(0 ≤ K0 ≤ α);

K0 = (A + m1)/[1 + γ(A + m1)] = (0,603 + 0,028)/[1 + 0,765(0,603 + 0,028)] = 0,426 > α = 0,083.

Это означает, что опасное сечение на рассматриваемом участке не находится.

Вычислим K0, предполагая, что опасное сечение находится на участке между силами P1 и P2 (α ≤ K0 ≤ α + αк)

(A - 2γαm1)/(1 + γ×A) = (0,603 - 2×0,765×0,083×0,028)/(1 + 0,765×0,603) = 0,41 < α + αк = 0,413.

рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru

Рис. 32. Двускатная клеефанерная балка покрытия

Таким образом, расчетное сечение располагается от торца балки на расстоянии

x0 = K0l = 0,41×1800 = 738 см.

Пример 3. Запроектировать двускатную клеефанерную балку пролетом 18 м переменной высоты с уклоном 1:15 (рис. 32).

Нагрузки: расчетная q = 7 кН/м, нормативная qн = 5,5 кН/м.

Материалы: для поясов - сосновые доски сечением 144 ´ 33 мм (после калибровки и фрезерования пиломатериала с сечением 150 ´ 40 мм) с пропилами.

В растянутых поясах используется древесина 2-го сорта, в сжатых - 3-го сорта. Для стенок используется фанера клееная, березовая, марки ФСФ В/ВВ толщиной 12 мм. Доски поясов стыкуются по длине на зубчатый шип, фанерные стенки - «на ус».

Высоту поперечного сечения балки в середине пролета принимаем h = l/12 = 18/12 = 1,5 м. Высоту опорного сечения,

h0 = h - 0,5li = 1,5 - 0,5×18×0,0667 = 0,9 м.

Ширина балки b = Σδд + Σδф = 4×3,3 + 2×1,2 = 15,6 см.

По длине балки укладывается 13 листов фанеры с расстоянием между осями стыков lф - 10δф = 152 - 1,2×10 = 140 см.

Расстояние между центрами поясов в опорном сечении.

h'0 = h0 - hн = 0,9 - 0,144 = 0,756 м; 0,5h'0 = 0,378 м.

Расчетное сечение располагается на расстоянии x от оси опорной площадки

x = рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru = 18 рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru = 6,9 м, где γ = h'0/(li) = 0,756(18×0,0667) = 0,63.

Вычисляем параметры расчетного сечения: высота балки

hx = h0 + ix = 0,9 + 0,0667×6,9 = 1,36 м;

расстояние между центрами поясов

h'x = 1,36 - 0,144 = 1,216 м; 0,5h'x = 0,608 м;

высота стенки в свету между поясами

hxст = 1,216 - 0,144 = 1,072 м; 0,5hxст = 0,536 м.

Изгибающий момент в расчетном сечении

Mx = qx(l - x)/2 = 7×6,9(18 - 6,9)/2 = 268,1 кН×м;

требуемый момент сопротивления (приведенный к древесине)

Wпр = Mxγn/Rр = 268,1×106×0,95/9 = 28,2×106 мм3;

соответствующий ему момент инерции

Iпр = Wпрhx/2 = 28,2×106×1360/2 = 192×108 мм4.

Задаемся двутавровой коробчатой формой поперечного сечения (см. рис. 32).

Фактические момент инерции и момент сопротивления сечения, приведенные к древесине, равны

Iпр = Iд + IфEфKф/Eд = 2[(132×1443/12) + 132×144×6082] + 2×12×13603×0,9×1,2/12 = 195,5×108 > 192×108 мм4;

Wпр = Iпр×2/hx = 2×195,5×108/1360 = 28,75×106 > 28,2×106 мм3,

Здесь Kф = 1,2 - коэффициент, учитывающий повышение модуля упругости фанеры при изгибе в плоскости листа.

Проверяем растягивающие напряжения в фанерной стенке

σфр = MxEфKф(WпрEд) = 268,1×106×0,9×1,2(28,75×106) = 10,1 < Rфрmфn = 14×0,8/0,95 = 11,8 МПа.

Здесь mф = 0,8 - коэффициент, учитывающий снижение расчетного сопротивления фанеры, стыкованной «на ус», при работе ее на изгиб в плоскости листа. Принимая раскрепление сжатого пояса прогонами или ребрами плит через 1,5 м, определяем его гибкость из плоскости балки

λy = lр(0,29b) = 150(0,29×15,6) = 33,2 < 70 и, следовательно,

φy = 1 - a(λ/100)2 = 1 - 0,8(3,32/100)2 = 0,91, а напряжения сжатия в поясе

σс = Mx/Wпр = 268,1×106×28,75×106 = 9,32 < φyRсn = 0,91×11×0,95 = 10,5 МПа.

Проверку фанерных стенок по главным напряжениям производим в зоне первого от опоры стыка на расстоянии x1 = 1,385 м (см. рис. 32).

Для данного сечения

M = qx1(l - x1)/2 = 7×1,385(18 - 1,385)/2 = 80,5 кН×м;

Q = q (l/2 - x1) = 7(18/2 - 1,385) = 53,3 кН;

h = 0,9 + 1,385×0,0667 = 0,99 м;

hст = 0,99 - 2×0,144 ≈ 0,7 м - высота стенки по внутренним кромкам поясов, откуда 0,5hст = 0,35 м.

Момент инерции данного сечения и статический момент на уровне внутренней кромки, приведенные к фанере:

Iпр = 83×108 мм4;

Sпр = 8,9×106 мм3.

Нормальные и касательные напряжения, в фанерной стенке на уровне внутренней кромки растянутого пояса

σст = M×0,5hст/Iпр = 80,5×106×350/83×108 = 3,4 МПа;

τст = QSпр/(IпрΣδф) = 53,3×103×8,9×106/(83×108×2×12) = 2,4 МПа.

Главные растягивающие напряжения по СНиП II-25-80 формула (45)

0,5σст + рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru = 0,5×3,3 + рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru = 4,56 < (Rрфαn)mф = (5,7/0,95)0,8 = 4,8 МПа при угле

α = 0,5arctg (2τстст) = 0,5arctg (2×2,4/3,3) = 27,5°

по графику на рис. 17 (СНиП II-25-80, прил. 5).

Для проверки устойчивости фанерной стенки в опорной панели балки вычисляем необходимые геометрические характеристики: длина опорной панели a = 1,3 м (расстояние между ребрами в свету); расстояние расчетного сечения от оси опоры x2 = 0,7 м; высота фанерной стенки в расчетном сечении

hст = (0,9 + 0,7×0,0667) - 2×0,144 ≈ 0,66 м

hстф = 660/12 = 55 > 50; γ = a/hст = 1,3/0,66 ≈ 2.

По графикам на рис. 18и 19 прил. 5 для фанеры ФСФ и γ = 2 находим Kи = 15 и Kτ = 2,5.

Момент инерции и статический момент для расчетного сечения x2, приведенные к фанере

Iпр = 74×108 мм4; Sпр = 8,4×106 мм3.

Изгибающий момент и поперечная сила в этом сечении

M = qx2(l - x2)/2 = 7×0,7(18 - 0,7)/2 = 42,4 кН×м;

Q = q (l/2 - x) = 7(18/2 - 0,7) = 58,1 кН.

Нормальные и касательные напряжения в фанерной стенке на уровне внутренней кромки поясов

σст = M0,5hст/Iпр = 42,4×106×0,5×660/74×108 = 1,9 МПа;

τст = QSпр/(IпрΣδф) = 58×103×8,4×106/(74×108×2×1012) = 2,75 МПа.

По СНиП II-25-80 формула (48) проверяем выполнение условия устойчивости фанерной стенки:

а) в опорной панели

σст/[Kи(100δ/hст)2] + τст/[Kτ(100δ/расч)2] = 1,9/[15(100/55)2 + 2,75/[2,5(100/55)2] = 0,38 < 1, где hст/δ = 55;

б) в расчетном сечении с максимальными напряжениями изгиба (x = 6,9 м) при hст/δ = 1,21/0,012 = 101 > 50;

γ = a/hст = 1,3/1,22 = 1,07, Kи = 20 и Kτ = 3,5.

Напряжения изгиба в фанерной стенке на уровне внутренней кромки поясов

σст = Mx0,5hст/Iпр = 268,1×106×536/181×108 = 7,9 МПа,

где Iпр = 181×108 мм4;

τст = QxSпр/(IпрΣδф) = 14,7×103×12,8×106/(181×108×2×12) = 0,43 МПа,

где Q = q(l/2 - x) = 7(18/2 - 6,9) = 14,7 кН,

S = 12,8×106 мм3.

Используя СНиП II-25-80, формула (48), получим

7,9[20(100/101)2] + 0,43[3,5(100/101)2] = 0,53 < 1.

Производим проверку фанерных стенок в опорном сечении на срез в уровне нейтральной оси и на скалывание по вертикальным швам между поясами и стенкой в соответствии со СНиП II-25-80, пп. 4.27 и 4.29.

Момент инерции и статический момент для опорного сечения, приведенные к фанере, определяем как и ранее

Iпр = 65,5×108 мм4; Sпр = 9,1×106 мм3;

τср = QmaxSпр/(IпрΣδф) = 7,9×103×9,1×106/(65,5×108×2×12) = 3,65 < Rфсрn = 6/0,95 = 6,3 МПа;

τск = QmaxSпр/(Iпрnhи) = 7,9×103×9,1×106/(65,5×108×4×144) = 0,15 < Rфскn = 0,8/0,95 = 0,84 МПа.

Прогиб клеефанерной балки в середине пролета определяем согласно п. 4.33 по формуле (50) СНиП II-25-80. Предварительно определяем:

f = f0[1 + c(h/l)2]/к,

где f0 = 5qнl4(384El) = 5×5,5×1012(384×248×1012) = 30 мм.

Здесь EI = EдIд + EфIф = 104×175×108 + 104×0,9×1,2×67,5×108 = 248×1012 Н×мм2 (СНиП II-25-80, прил. 4, табл. 3); значения коэффициентов к = 0,4 + 0,6β = 0,4 + 0,6×900/1500 = 0,76 и c = (45,3 - 6,9β)γ = (45,3 - 6,9×900/1500)2×144×132[2×12(1500 - 144)] = 48,1;

тогда

f = 30[1 + 48,1(1,5×103/18×103)2]/0,76 = 53 мм и f/l = 53/18×103 = 1/340 < 1/300 (СНиП II-25-80, табл. 16).

рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru

Рис. 33. Составная брусчатая балка на пластинчатых нагелях

Пример 4. Запроектировать балку пролетом 5,8 м, шагом 3 м составного сечения из брусьев на березовых пластинчатых нагелях односкатного покрытия сельскохозяйственного здания (рис. 33). Покрытие холодное, кровля рубероидная с уклоном i = 0,1. Район строительства - III (по снеговой нагрузке).

Согласно СНиП II-6-74 нормативная снеговая нагрузка на горизонтальную проекцию покрытия III района при угле наклона ската кровли α ≤ 25 ° и c = 1 равна Pс = 1 кН/м2.

Принимая коэффициент собственного веса балки Kсв = 12, определяем нормативную нагрузку от балки на горизонтальную проекцию по формуле

(g1 + Pс)/[1000/(Kсвl) - 1] = (0,3 + 1)/[1000/(12×5,8) - 1] = 0,1 кН×м2.

Нагрузка от кровли:

рубероидная кровля 0,06 кН/м2; диагональный сплошной настил из досок толщиной 3 см (0,03 ´ 1,0 ´ 1,0)6 = 0,18 кН/м2; прогоны кровли 8 ´ 12 см (0,08×0,12×1,0)6 = 0,06 кН/м2; итого 0,3 кН/м2.

Полные нагрузки на 1 м балки:

нормативная

qн = (g1 + gсв + Pс)B = (0,3 + 0,1 + 1)3 = 4,2 кН/м, в том числе постоянная нагрузка равна 1,2 кН/м; временная 3 кН/м;

расчетная

q = [(g1 + gсв)n1 + Pсnс]B = [(0,3 + 0,1)1,1 + 1×1,6]3 = 6,12 кН/м, где n1 = 1,1 и nс = 1,6.

коэффициенты перегрузки соответственно для собственного веса покрытия и снеговой нагрузки, назначаемые по СНиП II-6-74.

Определяем расчетный изгибающий момент

M = ql2/8 = 6,12×5,82/8 = 25,73 кН×м;

расчетную поперечную силу

Q = ql/2 = (6,12×5,8/2) = 17,75 кН.

Балку составляем из двух брусьев квадратного сечения со сторонами 15 см. Расчетные сопротивления изгибу и сжатию назначаем для древесины 2-го сорта, согласно СНиП II-25-80, пп. 3.1 и 3.2. с введением коэффициента условия работы mв и коэффициента надежности по назначению γn, согласно СТ СЭВ 384-76. Тогда

Rи = Rс = 15mвn = 15×0,9/0,9 = 15 МПа.

Проверку балки на прочность производим по формуле (17) СНиП II-25-80. Определяем

Wрасч = WнтKω = 0,9bh2/6 = 0,9×150×3002/6 = 2,03×106 мм3, где Kω = 0,9 по СНиП II-25-80, табл. 13.

Тогда M/Wрасч = 25,73×106/2,03×106 = 12,7 < 15 МПа, т.е. прочность балки обеспечена.

Рассчитываем соединения на пластинчатых нагелях. Ввиду того, что сплачиваемые брусья имеют ширину b = 150 мм, пластинки принимаем сквозными со следующими геометрическими характеристиками: толщина δпл = 12 мм, ширина bпл = 150 мм, длина lпл = 58 мм, глубина гнезда hвр = 30 мм.

Шаг пластинок принимаем из условия

Sпл = 3,5hвр + δ = 3,5×30 + 12 = 117 ≈ 120 мм.

Расчетную несущую способность одного пластинчатого нагеля определяем по формуле (58), СНиП II-25-80 с введением коэффициента mв

T = 0,75bплmв = 0,75×15×0,9 = 10,12 кН.

Из-за симметричности нагрузки относительно середины пролета в шве на среднем участке балки протяженностью 0,2l = 0,2 ´ 600 = 120 см пластинки не ставим.

Требуемое количество пластинок в шве на участках балки длиной 0,4l определяем по формуле (45):

nпл ≥ 1,2MSбр/(lбрT) = 3×1,2×25,73×106(2×300×10,12×103) = 15,3 ≈ 16 шт.

Количество пластинок, которое можно разместить на участке балки длиной 0,4l при шаге 12 см

nпл = 0,4lSпл = 0,4×580×12 = 19,3 > 16.

Проверяем жесткость балки по формуле

f = 5qнl4/(384EIKж) = 5×4,2×5,84×1012/(384×104×3,375×108×0,75) = 24,4 мм

или относительный прогиб f/l = 24,4/5800 = 1/238 < 1/200, т.е. требуемая жесткость балки обеспечена.

В опорных узлах на расстоянии 50 см от оси опоры устанавливаются стяжные болты d = 16 мм.

Балке придаем строительный подъем fстр = 1,5f = 1,5×24,4 = 37 мм.

Фермы

6.26. В покрытиях зданий и сооружении следует применять однопролетные фермы. Рекомендуемые схемы и типы ферм, их основные характеристики приведены в табл. 1.

Проектирование ферм следует выполнять в соответствии с требованиями СНиП II-25-80, пп. 6.21 – 6.24.

Фермы изготавливаются из клееной или цельной (предпочтительно из брусьев) древесины. Для пролетов до 12 м могут применяться дощатые фермы.

В фермах из клееной древесины верхние пояса выполняются обычно неразрезными. Поперечное сечение поясов принимается, как правило, прямоугольным.

Стыки элементов верхнего пояса ферм из цельной древесины обычно осуществляются в узлах или вблизи узлов непосредственным упором. Стыки перекрываются деревянными накладками, которые должны обеспечивать необходимую жесткость сжатых поясов из плоскости.

6.27. Осевые усилия и перемещения в элементах ферм допускается определять в предположении шарниров в узлах. Расчетные значения усилий определяются в поясах всех типов ферм и во всех элементах треугольных ферм от действия постоянной и временной (снеговой) нагрузки по всему пролету; в решетке всех типов ферм, кроме треугольных, а также от действия постоянной нагрузки по всему пролету и временной (снеговой) - на половине пролета.

В фермах с подвесным эксплуатируемым потолком дополнительно к весу оборудования и материалов должна приниматься временная нагрузка 0,75 кН/м2 по всему пролету. При проектировании ферм временные нагрузки от оборудования и подвесного транспорта рекомендуется передавать только в узлах верхнего пояса.

6.28. В фермах с неразрезным верхним поясом при внеузловой нагрузке изгибающие моменты определяются по деформированной схеме, как в неразрезной балке в соответствии с рекомендациями настоящего Пособия, пп. 4.14 - 4.16 и СНиП II-25-80, п. 3.5.

6.29. Перемещение узлов фермы с учетом податливости соединений определяется по правилам строительной механики с введением приведенного модуля упругости eпр, определяемого по формуле

E'пр = рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru при Nsi > N;

E'пр = рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru при Nsi ≈ N,

где E' = 300Rс по СНиП II-25-80, п. 3.5.

Fбр - площадь брутто поперечного сечения элемента фермы;

N - действующее в элементе расчетное осевое усилие;

Nsi - расчетная несущая способность соединения элементов;

l - длина элемента;

δi - деформация соединения при полном использовании его расчетной несущей способности по табл. 21;

m - общее число присоединений элемента.

В стыке сжатых поясов лобовым упором и растянутых поясов без накладок m = 1; в растянутых поясах с накладками m = 2; в элементе решетки при одноступенчатой передаче усилия в соединениях по его концам m = 2, соответственно при двухступенчатой передаче m = 4.

6.30. Расчет верхнего пояса на прочность и устойчивость как в плоскости, так и из плоскости ферм, производится согласно СНиП II-25-80 и разд. 4 настоящего Пособия.

6.31. При внеузловой нагрузке в фермах с прямолинейным или ломаным разрезным верхним поясом передачу сжимающих усилий в нем рекомендуется осуществлять с эксцентриситетом, создающим обратный (разгружающий) изгибающий момент, величина которого не должна превышать 25 % балочного момента для треугольных ферм без решетки и 40 % - для остальных.

6.32. Внецентренное прикрепление элементов решетки допускается в сегментных и многоугольных фермах со слабо работающей решеткой.

При внецентренном креплении решетки к растянутому нижнему поясу фермы надо учитывать возникающие в нем изгибающие моменты и рассчитывать на внецентренное растяжение по СНиП II-25-80, п. 4.16.

При отсутствии стыка в поясе вблизи узла значение момента следует принимать распределенным поровну между двумя смежными панелями; при наличии стыка у рассматриваемого узла момент должен быть полностью воспринят панелью пояса, не имеющей стыка.

Влияние узлового момента на соседние узлы не учитываются. Расчетный изгибающий момент Mвн, в поясе от внецентренного прикрепления решетки в узле определяют по формуле

Mвн = ΔNe,

где ΔN - разность расчетных усилий в смежных панелях пояса, определяется для случаев полного и одностороннего расположения временной нагрузки;

e - расстояние от точки пересечения осей элементов решетки до оси пояса.

6.33. Расчет разрезных верхних сжато-изгибаемых поясов ферм при внеузловой нагрузке должен производиться согласно СНиП II-25-80, пп. 4.17 и 4.18, а при узловой нагрузке в случае разрезного пояса из прямолинейных элементов, как для центрально-сжатых элементов - пп. 4.2 – 4.6 с учетом п. 6.21 для обоих случаев.

6.34. В сегментных фермах неразрезный верхний пояс рассматривается как многопролетная неразрезная балка криволинейного очертания.

Изгибающие моменты в пролетах Mпр и на опорах Mоп панелей неразрезного пояса сегментных ферм определяются для крайних (опорных) панелей по формулам:

при равномерно распределенной нагрузке интенсивностью q

Mпр = ql2n/14 - 0,64Nf;

Mоп = -ql2n/10 + 0,72Nf;

при одном сосредоточенном грузе P посередине панели

Mпр = Pln/6 - 0,56Nf;

Mоп = -Pln/6 + 0,88Nf.

Для средних панелей фермы изгибающие моменты определяются по формулам:

при равномерно распределенной нагрузке

Mпр = ql2n/24 - Nf/3;

Mоп = -ql2n/12 + 2Nf/3;

при одном сосредоточенном грузе по середине панели

Mпр = Pln/8 - Nf/4;

Mоп = -Pln/8 + 3Nf/4,

здесь ln - горизонтальная проекция панели между центрами узлов;

N - расчетное продольное усилие в панели;

f = l2n/(8r) - стрела подъема панели, зависящая от длины хорды между центрами узлов ln и радиуса верх него пояса фермы r, определяемого из выражения.

r = (l2 + 4h2)/(8h),

в котором h - высота фермы в середине пролета между осями поясов, а l - пролет фермы.

6.35. В сегментных фермах с разрезным верхним поясом изгибающий момент в панелях определяется по формуле

M = M0 - Nf,

где M0 - изгибающий момент в свободнолежащей балке пролетом l;

N - продольная сила;

f - стрела подъема панели.

6.36. Расчетную длину сжатых элементов ферм при расчете на устойчивость следует принимать по СНиП II-25-80, пп. 4.21 и 6.23.

Пример 1. Запроектировать трапецеидальную брусчатую ферму пролетом 18 м, шагом 3 м для покрытия неотапливаемого складского здания размером в плане 18 ´ 60 м.

Район строительства - г. Калинин.

Кровля из волнистых асбестоцементных листов по прогонам с уклоном i = 25 %.

Элементы фермы соединяются между собой лобовым упором и с помощью стальных болтов и нагелей, гвоздей и деталей из стального проката.

Назначаем высоту фермы h = 1/6l = 18/6 = 3 м. Угол наклона кровли к горизонту α = arctg 0,25 = 14°. Высота фермы над опорой

hо = h - (ltg α/2) = 3 - 18×0,25/2 = 0,75 м.

Прогоны располагаем с шагом 1,075 м. Решетку фермы выбираем исходя из минимального количества узлов и стыков в поясах с целью рационального использования пиломатериалов длиной 6,5 м.

Принимаем 8-панельную схему фермы с внеузловым приложением нагрузки (рис. 34).

Нагрузка на 1 м2 проекции кровли от собственного веса прогонов и волнистых асбестоцементных листов: нормативная - 0,294 кН/м2; расчетная - 0,323 кН/м2.

рекомендации и примеры по проектированию деревянных конструкций 2 страница - student2.ru

Рис. 34. Геометрическая схема фермы

Вес снегового покрова для г. Калинина (III район) P0 = 1 кН/м2 горизонтальной проекции; коэффициент, учитывающий форму покрытия в соответствии со СНиП II-6-71, п. 5.5, табл. 5. c = 1, тогда нормативная равномерно распределенная снеговая нагрузка

Pнсн = P0c = 1×1 = 1 кН/м2.

Собственный вес фермы в зависимости от нормативного веса кровли и снега определяем по формуле прил. 2

gнсв = (gнп + Pнсн)[1000/(Kсвl) - 1] = (0,294 + 1)[1000/(5×18) - 1] = 1,294/10,1 = 0,128 кН/м2;

расчетная нагрузка от фермы

gсв = 0,128×1,1 = 0,141 кН/м2.

Отношение нормативного собственного веса, покрытия к весу снегового покрова

(gнп + gнсв)/P0 = (0,194 + 0,128)/1 = 0,422

по СНиП II-6-74, п. 5.7 коэффициент перегрузки n = 1,59, тогда расчетная снеговая нагрузка на 1 м2 горизонтальной проекции покрытия равна

Pсн = P0Cn = 1×1×1,59 = 1,59 кН/м2.

Наши рекомендации