Пластических деформаций в материале

 
  Пластических деформаций в материале - student2.ru

Пластических деформаций в материале - student2.ru ; (2.10)

τ = Q S /I t≤ Rs Пластических деформаций в материале - student2.ru c.

где Пластических деформаций в материале - student2.ru и Пластических деформаций в материале - student2.ru - максимальный момент и поперечная сила в балке от расчетной нагрузки; Пластических деформаций в материале - student2.ru - момент сопротивления нетто поперечного сечения балки, в случае несимметричного сечения балки выбирается Wnmin = Ix / y max ; Пластических деформаций в материале - student2.ru - статический момент сдвигающейся части сечения относительно нейтральной оси; I - момент инерции сечения балки; Пластических деформаций в материале - student2.ru - толщина стенки.

По второму предельному состоянию наибольший прогиб балки от нагрузки при эксплуатации сравнивается с предельной величиной указанной в нормах, либо в задании на проектирование.

Величина прогиба зависит от расчетной схемы балки, а предельный прогиб – от назначения. Например, для главной балки рабочей площадки промздания, имеющей один пролет и шарнирные опоры, загруженной равномерно распределенной нагрузкой, проверка прогиба производится по формуле:

5

fmax = ----- (qn l4 / E I) ≤ l / 400 (2.11)

384

где Пластических деформаций в материале - student2.ru - максимальный прогиб балки; Пластических деформаций в материале - student2.ru - нормативная нагрузка на балку; Пластических деформаций в материале - student2.ru - прогиб балки; E I- изгибная жесткость балки; 400 – норма прогиба балки.

Формула для проверки прочности изгибаемых элементов при наличии пластических деформаций (пластический шарнир) получается из выражения (2.10) путем замены Пластических деформаций в материале - student2.ru на Пластических деформаций в материале - student2.ru , т.е.

M / (c Wn) ≤ Ry γc или M / Wn ≤ cRy γc (2.12).

Сравнивая это выражение с (2.10) видим, что формально учет пластических деформаций сводится к повышению расчетного сопротивления умножением на величину “c”, коэффициент, характеризующий резерв несущей способности изгибаемого элемента, обусловленный пластической работой металла, и определенный по формуле для балок двутаврового сечения, как наиболее распространенного в изгибаемых элементах

Пластических деформаций в материале - student2.ru , (2.13)

где Пластических деформаций в материале - student2.ru - отношение площадей поперечного сечения пояса и стенки балки.

Для прокатных двутавров различных типов Пластических деформаций в материале - student2.ru Пластических деформаций в материале - student2.ru , чему соответствует значение с = 1,1 .

Для составных двутавров (рис.2.2,в). коэффициент“c” вычисляется по формуле (2.13).

Для прямоугольного сечения, когда площадь Пластических деформаций в материале - student2.ru поясов балки можно приравнять к нулю – с = 1,5 (рис.2.2,б).

Устремляя площадь стенки к нулю (рис.2.2,е) из двутавра получаем расчетные сечения фермы или балки с гибкой стенкой, тогда с = 1.

Наибольшим пластическим резервом будет обладать балка с поперечным сечением (см. рис.2.2,а), для нее с = 2.

Практически выбор формы поперечного сечения изгибаемых элементов зависит от многих факторов, среди которых главным является расход металла, так как его стоимость составляет 80% общей стоимости конструкции.

Кроме нормальных напряжений Ơ в балках возникают и касательные напряжения τxy, зависящие от поперечной силы Пластических деформаций в материале - student2.ru и локальных напряжений Ơy в местах передачи на балку сосредоточенных нагрузок. Например, для балок, загруженных сосредоточенными силами по пролету (рис.2.3,а) определяющей

будет компонента Ơx. При большей сосредоточенной нагрузке на балке с малым пролетом (рис.2.3,б) определяющим будет напряжение τxy.. Распределение Ơпр

 
  Пластических деформаций в материале - student2.ru

Рис.2.2. Зависимость коэффициента “c” от формы поперечного сечения

Изгибаемого элемента

по высоте балки в упругой стадии будет существенно отличаться от предыдущего случая, а при дальнейшем увеличении нагрузки вплоть до появления пластического шарнира (Ơпр = ƠT) обусловит более развитую пластическую область вблизи нейтральной оси.

При рассмотренном многократном напряженном состоянии проверку прочности балки можно производить по формуле:

Пластических деформаций в материале - student2.ru (2.14)

где 1,15 – коэффициент, учитывающий развитие пластических деформаций в балке [аналогично коэффициенту “c” в формуле (2.12)].

При изгибе относительно двух главных осей инерции поперечного сечения

балки (x, y) – косом изгибе - допускается проверку прочности. производить по упрощенной формуле

Mx/(cx Пластических деформаций в материале - student2.ru Wx.n.min)+My/(cy Wy.n.min) ≤ Ry γc при τ≤ 0.5Rs (2.15)

где Пластических деформаций в материале - student2.ru и Пластических деформаций в материале - student2.ru даются в зависимости от формы сечения (см.прил.1); Пластических деформаций в материале - student2.ru - зависит от величины Пластических деформаций в материале - student2.ru .

 
  Пластических деформаций в материале - student2.ru

Рис. 2.3. Распределение пластических деформаций в двутавровой балке при сложном напряженном состоянии.

Наши рекомендации