Основные характеристики вариационного ряда
Построение вариационного ряда является только первым шагом в изучении
статистических данных. Для более глубокого исследования материала необходимы обобщающие количественные показатели, вскрывающие общие свойства статистической совокупности. Эти показатели, во-первых, дают общую картину, показывают тенденцию развития процесса или явления, нивелируя случайные индивидуальные отклонения, во-вторых, позволяют сравнивать вариационные ряды и, наконец, используются во всех
разделах математической статистики при более полном и сложном математическом анализе статистической совокупности.
Существуют характеристики вариационного ряда: меры уровня, или средние.
Меры уровня, или средние. Наиболее употребительными в статистических
исследованиях являются три вида средних: средняя арифметическая, мода и медиана.
Выбор типа средней для характеристики вариационного ряда зависит от цели, для которой исчисляется средняя, от особенностей исходного материала и от возможностей той или иной средней.
Прежде чем перейти к характеристике отдельных видов средней, сформулируем некоторые, самые общие требования к средней.
Средняя, представляет собой количественную характеристику качественно
однородной совокупности. Нарушение этого требования приводит к неверным выводам, искажает суть явления.
Кроме того, необходимо, чтобы средняя не была слишком абстрактной, а имела ясный смысл в решении задачи. Желательно, чтобы процедура вычисления средней была проста. При прочих равных условиях предпочтение отдается той средней, которая проще вычисляется. При выборе средней желательно свести к минимуму влияние случайных колебаний выборки. Так, если одной и той же совокупности взять несколько групп элементов, то средние, им соответствующие, будут, как правило, различаться по величине. Рекомендуется использовать вид средней, у которой эти различия минимальны.
Наиболее распространённой мерой уровня - является средняя арифметическая:
=
где S– знак суммирования от 1 до k; xi-варианты с порядковым номером i;
- объем совокупности (число элементов совокупности); ni- частота варианта xi, k - число варианта. Если вместо частоты заданы частости qi, то формула имеет вид
,
где 100%
Пример: вычислим среднее арифметическое массы тела девочек 6 лет (ранжированный ряд 22 23 23 24 24 25 25 25 26 27).
В том случае, когда статистические данные представлены в виде интервального вариационного ряда, при вычислении выборочного среднего значениями вариант считают середины интервалов.
Пример: вычислить среднее значение массы тела женщин 30 лет.
Выборочное среднее является основной характеристикой положения, показывает центр распределения совокупности, позволяет охарактеризовать исследуемую совокупность одним числом, проследить тенденцию развития, сравнить различные совокупности.
Непараметрическими характеристиками положения являются мода и медиана. Модой называется варианта, имеющая наибольшую частоту.
Медианой называется варианта, расположенная в центре ранжированного ряда. Если ряд состоит из четного числа вариант, то медианой считают среднее арифметическое двух вариант, расположенных в центре ранжированного ряда.
Пример: найти моду и медиану выборочной совокупности по массе тела девочек 6 лет
Мо = 25; Ме = 24,5
Более ценными для характеристики рассеяния признака являются показатели, при расчете которых используются отклонения всех вариант от некоторой средней (например, средней арифметической, медианы). К таким мерам рассеяния, в частности, относятся дисперсия и среднее квадратичное отклонение. Последние меры рассеяния меньше любой другой меры подвержены случайным колебаниям выборки. Среднее квадратичное
отклонение и дисперсия нашли широкое применение почти во всех разделах математической статистики.
Дисперсия, или средний квадрат отклонения (обозначим σ2) есть средняя
арифметическая из квадратов отклонений вариант от их средней арифметической, т. е. в математической записи
где xi-варианта с порядковым номером i; x - средняя арифметическая; k- число вариант; qi – частота или частость с порядковым номером i.
Часто для исследования удобно представлять меру рассеяния в тех же единицах измерения, что и варианты. Тогда вместо дисперсии используют среднее квадратичное отклонение, которое является квадратным корнем из дисперсии, т. е. среднее квадратичное отклонение вычисляется по формуле
Математические модели
Модель(modele (фр.), от лат. modulus — «мера, аналог, образец») – это упрощенное представление реального устройства и/или протекающих в нем процессов, явлений.
Построение и исследование моделей, то есть моделирование, облегчает изучение имеющихся в реальном устройстве (процессе) свойств и закономерностей.
Моделирование является обязательной частью исследований и разработок, неотъемлемой частью нашей жизни, поскольку сложность любого материального объекта и окружающего его мира бесконечна вследствие неисчерпаемости материи и форм её взаимодействия внутри себя и с внешней средой.
Одни и те же устройства, процессы, явления и т. д. (далее – «системы») могут иметь много разных видов моделей. Как следствие, существует много названий моделей, большинство из которых отражает решение некоторой конкретной задачи. Ниже приведена классификация и дана характеристика наиболее общих видов моделей.
система |
Эксперимент с реальной системой |
Эксперимент с моделью системы |
Математическое моделирование |
Имитационное моделирование |
Натурное моделирование |
Аналитическое моделирование |
Иерархия моделирования системы
Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:
• адекватность, то есть соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадии проектирования, когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы;
• точность, то есть степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;
• универсальность, то есть применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения большего круга задач;
• целесообразная экономичность, то есть точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. И удачный выбор модели, как показывает практика, – результат компромисса между отпущенными ресурсами и особенностями используемой модели;
• и др.
Эвристические модели
Эвристические модели, как правило, представляют собой образы, рисуемые в воображении человека. Их описание ведется словами естественного языка (например, вербальная информационная модель) и, обычно, неоднозначно и субъективно. Эти модели не формализуемы, то есть не описываются формально-логическими и математическими выражениями, хотя и рождаются на основе представления реальных процессов и явлений.
Эвристическое моделирование – основное средство вырваться за рамки обыденного и устоявшегося. Но способность к такому моделированию зависит, прежде всего, от богатства фантазии человека, его опыта и эрудиции. Эвристические модели используют на начальных этапах проектирования или других видов деятельности, когда сведения о разрабатываемой системе ещё скудны. На последующих этапах проектирования эти модели заменяют на более конкретные и точные.
Натурные модели
Отличительной чертой этих моделей является их подобие реальным системам (они материальны), а отличие состоит в размерах, числе и материале элементов и т. п. По принадлежности к предметной области модели подразделяют на следующие:
• Физические модели. Это – реальные изделия, образцы, экспериментальные и натурные модели, когда между параметрами системы и модели одинаковой физической природы существует однозначное соответствие. Выбор размеров таких моделей ведется с соблюдением теории подобия.
Физическое моделирование – основа наших знаний и средство проверки наших гипотез и результатов расчетов. Физическая модель позволяет охватить явление или процесс во всём их многообразии, наиболее адекватна и точна, но достаточно дорога, трудоемка и менее универсальна. В том или ином виде с физическими моделями работают на всех этапах проектирования.
• Технические модели;
• Социальные модели;
• Экономические модели и т.д.
Математические модели
Математические модели – формализуемые, то есть представляют собой
совокупность взаимосвязанных математических и формально-логических выражений, как правило, отображающих реальные процессы и явления (физические, психические, социальные и т. д.). По форме представления бывают:
• аналитические модели. Их решения ищутся в замкнутом виде, в виде
функциональных зависимостей. Удобны при анализе сущности описываемого явления или процесса и использовании в других математических моделях, но отыскание их решений бывает весьма затруднено;
• численные модели. Их решения – дискретный ряд чисел (таблицы). Модели универсальны, удобны для решения сложных задач, но не наглядны и трудоемки при анализе и установлении взаимосвязей между параметрами. В настоящее время такие модели реализуют в виде программных комплексов – пакетов программ для расчета на компьютере. Программные комплексы бывают прикладные, привязанные к предметной области и конкретному объекту, явлению, процессу, и общие, реализующие универсальные математические соотношения (например, расчет системы алгебраических уравнений);
• формально-логические информационные модели – это модели, созданные на формальном языке.
Построение математических моделей возможно следующими способами
• аналитическим путем, то есть выводом из физических законов, математических аксиом или теорем;
• экспериментальным путем, то есть посредством обработки результатов эксперимента и подбора приближенно совпадающих(аппроксимирующих) зависимостей.
Математические модели более универсальны и дешевы, позволяют поставить «чистый» эксперимент, прогнозировать развитие явления или процесса, отыскать способы управления ими. Математические модели – основа построения компьютерных моделей и применения вычислительной техники.