Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид

Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид

Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru или, с учетом Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Разделяем переменные, деля обе части уравнения на произведение Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru . Интегрируем полученное уравнение с разделенными переменными и получаем общее решение или общий интеграл дифференциального уравнения.

П р и м е р. Найти частное решение дифференциального уравнения с разделяющимиcя переменными, удовлетворяющее заданному начальному условию

Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

Р е ш е н и е. Подставляем в уравнение Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru и получаем Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru или Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru . Делим обе части уравнения на произведение Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , получаем уравнение с разделенными переменными Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru . Интегрируя обе части, получаем общее решение: Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru или Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Подставляем начальное условие Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru в общее решение Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , отсюда Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Подставляем найденное значение произвольной постоянной Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru в общее решение и получаем искомое частное решение Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Задачи 241–260.Найти частное решение линейного дифференциального уравнения первого порядка, удовлетворяющее заданному начальному условию.

241. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

242. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

243. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

244. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

245. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

246. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

247. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

248. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

249. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

250. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

251. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

252. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

253. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

254. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

255. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru

256. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

257. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

258. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

259. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

260. Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Решение типового примера

Линейным дифференциальным уравнением первого порядка называется уравнение вида:

Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru где Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru – данные непрерывные функции.

При решении уравнения применяем подстановку Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , где Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru – искомые дифференцируемые функции. Подcтавляя вместо производной Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , получаем уравнение

Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru или Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Подбираем Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru так, чтобы выражение в скобках обращалось в ноль, тогда данное уравнение преобразуется к двум уравнениям с разделяющимися переменными Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru и Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

П р и м е р. Найти частное решение линейного дифференциального уравнения первого порядка, удовлетворяющее заданному начальному условию Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Р е ш е н и е.Подставляем Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru в данное уравнение Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , или Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru . Получаем два уравнения с разделяющимися переменными Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru и Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru . Из первого уравнения находим функцию Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , подставляя Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , имеем Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru или Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru . Интегрируя уравнение, получаем Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Из второго уравнения находим функцию Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru подставляя Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , имеем Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru или Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru . Интегрируя уравнение, получаем Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Найденные функции подставляем в выражение Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , находим общее решение исходного дифференциального уравнения Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru или Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Подставляем начальное условие Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru в общее решение, получаем Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru , отсюда Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Найденное значение произвольной постоянной Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru подставляем в общее решение, получаем искомое частное решение Решение типового примера. Дифференциальное уравнение первого порядка с разделяющимися переменными имеет вид - student2.ru .

Тема 9. ОСНОВНЫЕ ПОНЯТИЯ И ЗАДАЧИ ТЕОРИИ

ВЕРОЯТНОСТЕЙ

Для успешного решения задач по этой теме необходимо обратить внимание на определения основных понятий теории вероятностей, вероят­ности появления события. Особое внимание следует уделить классификации событий, теоремам сложения и умножения вероят­ностей. Далее необходимо остановиться на применении формулы полной вероятности и формулы Байеса, усвоить понятие повторных независимых испы­таний, а также применения формулы Бернулли и предельных теорем Муавра–Лапласа и Пуассона.

Глубокое усвоение понятия случайной величины, ее законов распределения и числовых характеристик является необходимым условием изучения методов обработки данных.

Вопросы для изучения и самопроверки

1. Предмет теории вероятностей.

2. Основные понятия (пространство элементарных событий, клас­сификация событий).

3. Классическое определение вероятности случайного события.

4. Теоремы сложения и умножения вероятностей.

5. Формула полной вероятности. Формула Баесса.

6. Схема повторных испытаний. Формула Бернулли.

7. Локальная и интегральная формулы Лапласа. Формула Пуассона.

8. Понятие случайной величины. Закон распределения дискретной случайной величины.

9. Числовые характеристики случайной величины.

10. Непрерывная случайная величина. Функция распределения. Плотность вероятности.

11. Нормальный закон распределения и его свойства.

12. Вероятность попадания нормально распределенной случайной величины в заданный интервал.

Задачи 261–280. При решении задач следует использовать теоремы сложения и умножения вероятностей.

261. Для сигнализации об аварии установлены два независи­мо работающих сигнализатора. Вероятность того, что при аварии сработает первый сигнализатор, равна 0,9; второй сигнализатор срабатывает с вероятностью 0,85. Найти вероятность того, что при аварии сработает только один сигнали­затор.

262. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что наугад взятое изделие окажется бракованным, равна 0,12. Проверено три изделия. Какова вероятность того, что два из них бракованные?

263. В группе учащихся, состоящей из 25 человек, 15 юно­шей и 10 девушек, для дежурства случайным образом отобра­но двое студентов. Какова вероятность того, что среди них бу­дет один юноша и одна девушка?

264. В ящике имеется 14 деталей, из которых 6 деталей нестандартны. Сборщик наудачу извлекает из ящика 4 детали. Какова вероятность того, что все они будут нестандартны?

265.Студент знает 20 из 25 вопросов программы. Какова ве­роятность того, что он знает все три вопроса, предложенные экзаменатором?

266. Техническое устройство содержит три независимо рабо­тающих элемента. Вероятности отказа этих элементов соот­ветственно равны 0,06; 0,08 и 0,1. Найти вероятность того, что техническое устройство не сработает, если для этого дос­таточно, чтобы отказал хотя бы один элемент.

267. Для поражения цели достаточно одного попадания. По цели произведено три выстрела с вероятностями попадания 0,78; 0,84; 0,92 соответственно. Найти вероятность того, что цель будет поражена.

268. Вероятность попадания в мишень при трех выстрелах хотя бы один раз для некоторого стрелка равна 0,875. Найти вероятность попадания при одном выстреле.

269. Из партии изделий товаровед отбирает изделия высшего сорта. Вероятность того, что наудачу взятое изделие окажет­ся высшего сорта, равна 0,4. Найти вероятность того, что из трех проверенных изделий только два будут высшего сорта.

270. Студент разыскивает нужные ему сведения в трех справочниках. Вероятности того, что эти сведения нахо­дятся в первом, во втором и в третьем справочнике равны соответственно 0,6; 0,8; 0,9. Найти вероятность того, что требуемые сведения содержатся хотя бы в одном справочнике.

271. В урне находятся 18 шаров, шесть из которых синие, а остальные белые. Наудачу друг за другом извлекаются три шара. Какова вероятность того, что все они будут синими?

272. В первой коробке 3 белых и 10 голубых шарфов. Во второй коробке 7 белых и 2 голубых шарфа. Из каждого ящика наудачу вынули по шарфу. Какова вероятность, что оба шарфа белые?

273. Три стрелка производят выстрел по цели. Вероятность попадания в цель для первого стрелка равна 0,7, для второ­го — 0,85, для третьего — 0,9. Найти вероятность того, что произойдет не менее двух попаданий.

274. В ящике 20 шаров, из которых 9 красных, а остальные белые. Наудачу вынули три шара. Какова вероятность того, что все они белые?

275. Имеется четыре прибора. Вероятность того, что прибор неисправен, равна 0,2. Какова вероятность того, что хотя бы один из четырех приборов исправен?

276. В группе из 23 студентов имеется 7 отличников. Выби­раются наудачу три студента. Какова вероятность, что все они отличники?

277. В ящике находятся 13 деталей, четыре из которых брако­ванные. Наудачу отобраны три детали. Какова вероятность того, что все они не окажутся бракованными?

278. Имеются два ящика, в первом из которых 6 белых и 9 красных платков, а во втором — 4 белых и 2 красных платка. Из каждого ящика вынимается наудачу по одному платку. Ка­кова вероятность того, что один из них будет красным, а дру­гой белым?

279. Вероятность выхода из строя комбайна в течение одного рабочего дня равна 0,01. Какова вероятность того, что за три рабочих дня комбайн ни разу не выйдет из строя?

280. Вероятность обнаружения цели при одном цикле обзора радиолокационной станцией равна 0,4. Какова вероятность об­наружения цели хотя бы один раз при трех циклах обзо­ра?

Наши рекомендации