И множественный коэффициент детерминации

Множественный коэффициент корреляции используется в качестве меры степени тесноты статистической связи между результирующим показателем (зависимой переменной) y и набором объясняющих (независимых) переменных И множественный коэффициент детерминации - student2.ru или, иначе говоря, оценивает тесноту совместного влияния факторов на результат.

Множественный коэффициент корреляции может быть вычислен по ряду формул[4], в том числе:

¨ с использованием матрицы парных коэффициентов корреляции

И множественный коэффициент детерминации - student2.ru , (3.18)

где Dr - определитель матрицы парных коэффициентов корреляции y, И множественный коэффициент детерминации - student2.ru ,

Dr11 - определитель матрицы межфакторной корреляции И множественный коэффициент детерминации - student2.ru ;

¨ стандартизованных коэффициентов регрессии И множественный коэффициент детерминации - student2.ru и парных коэффициентов корреляции И множественный коэффициент детерминации - student2.ru

И множественный коэффициент детерминации - student2.ru . (3.19)

Для модели, в которой присутствуют две независимые переменные, формула (3.18) упрощается

И множественный коэффициент детерминации - student2.ru . (3.20)

Квадрат множественного коэффициента корреляции равен коэффициенту детерминации R2. Как и в случае парной регрессии, R2 свидетельствует о качестве регрессионной модели и отражает долю общей вариации результирующего признака y, объясненную изменением функции регрессии f(x) (см. 2.4). Кроме того, коэффициент детерминации может быть найден по формуле

И множественный коэффициент детерминации - student2.ru . (3.21)

Однако использование R2 в случае множественной регрессии является не вполне корректным, так как коэффициент детерминации возрастает при добавлении регрессоров в модель. Это происходит потому, что остаточная дисперсия уменьшается при введении дополнительных переменных. И если число факторов приблизится к числу наблюдений, то остаточная дисперсия будет равна нулю, и коэффициент множественной корреляции, а значит и коэффициент детерминации, приблизятся к единице, хотя в действительности связь между факторами и результатом и объясняющая способность уравнения регрессии могут быть значительно ниже.

Для того чтобы получить адекватную оценку того, насколько хорошо вариация результирующего признака объясняется вариацией нескольких факторных признаков, применяют скорректированный коэффициент детерминации

И множественный коэффициент детерминации - student2.ru (3.22)

Скорректированный коэффициент детерминации всегда меньше R2. Кроме того, в отличие от R2, который всегда положителен, И множественный коэффициент детерминации - student2.ru может принимать и отрицательное значение.

Пример (продолжение примера 1). Рассчитаем множественный коэффициент корреляции, согласно формуле (3.20):

И множественный коэффициент детерминации - student2.ru =0,8601.

Величина множественного коэффициента корреляции, равного 0,8601, свидетельствует о сильной взаимосвязи стоимости перевозки с весом груза и расстоянием, на которое он перевозится.

Коэффициент детерминации равен: R2=0,7399.

Скорректированный коэффициент детерминации рассчитываем по формуле (3.22):

И множественный коэффициент детерминации - student2.ru =0,7092.

Заметим, что величина скорректированного коэффициента детерминации отличается от величины коэффициента детерминации.

Таким образом, 70,9% вариации зависимой переменной (стоимости перевозки) объясняется вариацией независимых переменных (весом груза и расстоянием перевозки). Остальные 29,1% вариации зависимой переменной объясняются факторами, неучтенными в модели.

Величина скорректированного коэффициента детерминации достаточно велика, следовательно, мы смогли учесть в модели наиболее существенные факторы, определяющие стоимость перевозки. Ñ

Наши рекомендации