Дискриминантный анализ
Дискриминантный анализ, как раздел многомерного статистического анализа, включает в себя статистические методы классификации многомерных наблюдений в ситуации, когда исследователь обладает так называемыми обучающими выборками ("классификация с учителем"). Например, для оценки финансового состояния своих клиентов при выдаче им кредита банк классифицирует их по надежности на несколько категорий по ряду признаков. В случае, когда следует отнести клиента к той или иной категории используют процедуры дискриминантного анализа. Очень удобно использовать дискриминантный анализ при обработке результатов тестирования. Так при выборе кандидатов на определенную должность можно всех опрошенных претендентов разделить на две группы - удовлетворяющих и неудовлетворяющих предъявляемым требованиям.
Все процедуры дискриминантного анализа можно разбить на две группы и рассматривать их как совершенно самостоятельные методы. Первая группа процедур позволяет интерпретировать различия между существующими классами, вторая - производить классификацию новых объектов в тех случаях, когда неизвестно заранее, к какому из существующих классов они принадлежат.
Пусть имеется множество единиц наблюдения - генеральная совокупность. Каждая единица наблюдения характеризуется несколькими признаками: xij - значение j-й переменной i-го объекта (i=1,..., n; j=1,..., p). Предположим, что все множество объектов разбито на несколько подмножеств (два и более). Из каждого подмножества взята выборка объемом nk, где k - номер подмножества (класса), k = 1,..., q.
Признаки, которые используются для того, чтобы отличать один класс (подмножество) от другого, называются дискриминантными переменными. Число объектов наблюдения должно превышать число дискриминантных переменных: p<n. Дискриминантные переменные должны быть линейно независимыми. Основной предпосылкой дискриминантного анализа является нормальность закона распределения многомерной величины. Это означает, что каждая из дискриминантных переменных внутри каждого из рассматриваемых классов должна быть подчинена нормальному закону распределения.
Основная идея дискриминантного анализа заключается в том, чтобы определить, отличаются ли совокупности по среднему какой-либо переменной (или линейной комбинации переменных), и затем использовать эту переменную, чтобы предсказать для новых членов их принадлежность к той или иной группе. Канонической дискриминантной функцией называется линейная функция:
dkm = β0 + β1*x1km + ... + βp*xpkm,
где:
dkm - значение канонической дискриминантной функции для m-го объекта в группе k (m = 1, ..., n, k = 1, ..., g);
xpkm - значение дискриминантной переменной Xiдля m-го объекта в группе k;
β0, ..., βp - коэффициенты дискриминантной функции.
С геометрической точки зрения дискриминантные функции определяют гиперповерхности в p-мерном пространстве. В частном случае при p=2 она является прямой, а при p=3 -плоскостью.
Коэффициенты βi первой канонической дискриминантной функции выбираются таким образом, чтобы центроиды (средние значения) различных групп как можно больше отличались друг от друга. Коэффициенты второй группы выбираются также, но при этом налагается дополнительное условие, чтобы значения второй функции были некоррелированы со значениями первой. Аналогично определяются и другие функции. Отсюда следует, что любая каноническая дискриминантная функция dимеет нулевую внутригрупповую корреляцию с d1, d2, ..., dg-1. Если число групп равно g, то число канонических дискриминантных функций будет на единицу меньше числа групп. Однако по многим причинам практического характера полезно иметь одну, две или же три дискриминантных функций. Тогда графическое изображение объектов будет представлено в одно–, двух– и трехмерных пространствах. Такое представление особенно полезно в случае, когда число дискриминантных переменных p велико по сравнению с числом групп g.
15.Задачи имитационного моделирования и принципы построения. Общий вид задачи имитационного моделирования.
Каждая модель или представление объекта средствами, отличными от его реального содержания есть форма имитации. Имитационное моделирование является весьма широким и недостаточно четко определенным понятием, имеющим очень большое значение для лиц, ответственных за создание и функционирование практически любых систем.
При имитационном моделировании динамические процессы объекта подменяются процессами, имитируемыми в абстрактной модели, но с соблюдением основных правил (режимов, алгоритмов) функционирования оригинала. В процессе имитации фиксируются определенные события и состояния или измеряются выходные воздействия, по которым вычисляются характеристики качества функционирования системы.
Все имитационные модели представляют собой модели типа так называемого "черного ящика". Это означает, что они обеспечивают выдачу выходных параметров системы, если на ее взаимодействующие подсистемы поступают входные воздействия. Для моделирования необходимо создать модель и провести ее исследование. Перед созданием модели требуется конкретизировать цели моделирования. После исследования надо выполнить обработку и анализ результатов моделирования. Процесс создания моделей проходит несколько стадий. Он начинается с изучения (обследования) реальной системы, ее внутренней структуры и содержания взаимосвязей между ее элементами, а также внешних воздействий и завершается разработкой модели. В укрупненном плане имитационное моделирование предполагает наличие следующих этапов:
1. Разработка концептуальной модели.
2. Подготовка исходных данных.
3. Выбор средств моделирования.
4. Разработка программной модели.
5. Проверка адекватности и корректировка модели.
6. Планирование машинных экспериментов.
7. Моделирование ("прогоны").
8. Анализ результатов моделирования.
Для одного и того же объекта можно составить множество моделей. Они будут отличаться степенью детализации и учета тех или иных особенностей режимов функционирования объекта. Поэтому все этапы имитационного моделирования пронизаны заранее сформулированной целью исследования.
Особую важность имеют первые три этапа. Рассмотрим их подробнее.