Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о

Задача 1.По приведенным в следующей таблице данным (первые три столбца) о распределении населения РФ по ежемесячному среднедушевому доходу (СДД) в 2004 году рассчитать показатели дифференциации доходов (численность населения России в 2004 году составила 144,2 млн. чел.).

№ групп i Месячный СДД, руб./чел. Доля населения di Численность населения, млн. чел. Доход, млн. руб. Доля доходов qi Кумулятивные доли
населения d’i дохода q’i
до 1000 0,019 2,7398 2054,85 0,00284829 0,019 0,00284829
1000-1500 0,043 6,2006 7750,75 0,01074355 0,062 0,01359184
1500-2000 0,062 8,9404 15645,7 0,02168699 0,124 0,03527883
2000-3000 0,146 21,0532 0,07295623 0,27 0,10823506
3000-4000 0,139 20,0438 70153,3 0,09724166 0,409 0,20547671
4000-5000 0,118 17,0156 76570,2 0,10613632 0,527 0,31161303
5000-7000 0,17 24,514 0,20387767 0,697 0,51549071
свыше 7000 0,303 43,6926 349540,8 0,48450929
  Итого 144,2 721432,6    

Решение. Сначала определяем абсолютные величины дифференциации. Так, больше всего людей (их доля – 0,303) имели доход свыше 7000 руб./чел. В этом интервале и находится модальный доход, точное значение которого согласно формуле (13)[2] определяется следующим образом:

Mo = 7000 + 2000 Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru = 7610 руб./чел.

Доход в интервале 4000-5000 руб./чел. является граничным для половины людей, поэтому согласно формуле (14) значение медианного дохода равно:

Ме = 4000 + 1000 Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru = 4771,19 руб./чел.

Затем рассчитываем простейшие относительные величины дифференциации – децильный (108) и фондовый (109) коэффициенты. Децильный (дециль составляет 10%) коэффициент – это отношение минимального СДД 10% самого богатого населения (minСДД10%бог) к максимальному СДД 10% самого бедного населения (maxСДД10%бед). Коэффициент фондов – это отношение среднего СДД 10% самого богатого населения к среднему же СДД 10% самого бедного населения.

Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru , (108) Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru . (109)

По исходным данным необходимо отобрать 10% самых бедных людей, т.е. первые три группы (их кумулятивная доля равна 0,124, что ближе всего к необходимым 0,1). Так как первый интервал СДД является открытым, следовательно, представляем его в закрытом виде, используя размах соседнего интервала в размере 500 руб./чел. (т.е. границы 1-й группы составят от 500 до 1000 руб./чел.). Тогда первые три группы самых бедных (12,4%) предстанут в границах 500-2000 с серединой 1250 руб./чел. Если 12,4% бедных имеют размах доходов 1500 руб./чел., то 10% будут иметь размах доходов: 10%*1500/12,4%=1209,68 (руб./чел.). Значит maxСДД10%бед = 500 + 1209,68 = 1709,68 (руб./чел.), а Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru = 500 + 1209,68 / 2 = 1104,84 (руб./чел.).

Теперь отберем 10 % самых богатых людей – это 8-я группа с доходами от 7000 до 9000 руб./чел. (так как интервал открытый, то применили размах соседнего интервала в размере 2000 руб./чел.), т.е. 30,3% самого богатого населения имеет размах доходов 2000 руб./чел.[3]. Нам нужно отобрать не 30,3%, а 10%, поэтому, решая пропорцию, находим размах доходов 10% самого богатого населения. Он равен 660,07 руб./чел. Отсюда minСДД10%бог = 9000 - 660,07 = 8339,93 руб./чел., а его среднее значение Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru = 9000 - 660,07/2 = 8669,97 (руб./чел.).

Таким образом, по формуле (108) децильный коэффициент КДЦ = 8339,93/1709,68=4,88, а по формуле (109) коэффициент фондов КФ = 8669,97/1104,84=7,85.

Для расчета более сложных относительных величин дифференциации определим доход и его долю в каждой группе людей, используя середины интервалов СДД и количество людей в группах. Так, доход первой группы составит: 750 руб./чел. * 2,7398 млн. чел. = 2054,85 млн.руб., а его доля равняется 2054,85/721432,6=0,00284829. Аналогично, например, для четвертой группы: 2500*21,0532 = 52633 млн. руб. и 52633/721432,6=0,07295623. Естественно, доли доходов надо определять после суммирования доходов по группам (получается 721432,6 млн. руб.).

Полученные доли людей и доходов вписываются в таблицу, после чего определяются соответствующие кумулятивные доли (нарастающим итогом). Например, кумулятивная доля людей 3-й группы составит 0,019+0,043+0,062=0,1240, а кумулятивная доля их доходов – соответственно 0,00284829+0,01074355+0,02168699=0,03527883. Сумма долей как в обычном, так и в кумулятивном виде должна равняться 1.

Кумулятивные доли также вписываются в таблицу, после чего можно определять коэффициенты локализации (определяется по формуле Лоренца (110)) и концентрации (определяется по формуле Джини (111)) доходов:

Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru ; (110) Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru . (111)

Значения коэффициентов Лоренца и Джини изменяются от 0 до 1. Нулевое их значение свидетельствует об абсолютной равномерности распределения доходов по группам населения. Чем ближе эти коэффициенты к единице, тем в большей мере доходы сосредоточены в отдельной группе населения. Естественно, при этом часть населения оказывается живущей в бедности.

Так, по формуле (110) коэффициент локализации Лоренца равняется:

Кл = 0,5 * (│0,19–0,002848│ + │0,043–0,010744│ + │0,062–0,021687│ + │0,146–0,072956│ + + │0,139–0,09242│ + │0,118–0,10614│ + │0,17–0,20388│ + │0,303–0,4845│) = 0,215.

Для наглядности неравномерность распределения доходов изобразим графически в виде кривой Лоренца (рис.8).

По формуле (111) коэффициент концентрации Джини равняется:

КД = 0,019*0,013592 + 0,062*0,03528 + 0,124*0,108235 + 0,27*0,2055 + 0,409*0,3116 + 0,527*0,5155 + 0,697*1 – 0,00285*0,062 – 0,0136*0,124 – 0,0353*0,27 – 0,108234*0,409 – 0,2055*0,527 – 0,3116*0,697 – 0,51549*1 = 1,168 – 0,897 = 0,271.

Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru Рис.8. Кривая распределения доходов.

Таким образом, коэффициенты Лоренца и Джини показали, что 0,215–0,271 доходов населения или 21,5–27,1% сосредоточено в руках 10% самых богатых людей, что говорит о неравномерности распределения доходов в России.

Задача 2. Рассчитать индекс развития человеческого потенциала на 2006 год по следующим данным:

Ожидаемая продолжительность жизни, лет
Доля грамотных / учащихся 0,82 / 0,65
Паритет покупательной способности валют 1,1
Среднегодовой индекс инфляции 1,03
Среднедушевой ВВП в мес., $/чел

Решение. В качестве обобщающего критерия уровня жизни используется разработанный Программой развития ООН в 1993 г. индекс развития человеческого потенциала (ИРЧП), который базируется на расчете трех индексов и представляет собой простую среднюю арифметическую величину:

Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru . (112)

где IОБР – международный индекс уровня образования, определяемый по формуле (113); IОЖ – индекс ожидаемой при рождении продолжительности жизни, определяемый по формуле (114); IВВП – индекс валового внутреннего продукта (ВВП), определяемый по формуле (116).

Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru , (113)

где Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru – доля грамотных, Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru – доля учащихся.

Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru , (114)

где Xm, XM —минимально и максимально возможная продолжительность жизни, Х0 – ожидаемая при рождении продолжительность жизни, определяемая по формуле (115).

По мировым стандартам Xm = 25 лет, а XM = 85 лет, значит, для международных сопоставлений надо принимать:

X0 = 85(1- К'мс), (115)

где К'мс – коэффициент младенческой смертности, выраженный в долях единицы.

Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru , (116)

где Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru – фактический в стране среднедушевой валовой внутренний продукт; ВВПm и ВВПM – минимальный и максимальный размеры среднедушевого ВВП по мировым стандартам; ППСВ – паритет покупательной способности валют.

В качестве минимального размера ВВП принято $100 на человека в месяц, а максимальным размером для разумно высокого благосостояния в 1992 г. считалось $5120 на человека в месяц. Максимальный размер на последующие годы корректируется с учетом среднегодового индекса инфляции по формуле (117):

ВВПM = 5120* Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru , (117)

где t – количество лет с 1992 до расчетного года, а индекс инфляции iф можно принять по предыдущему перед расчетным годом.

В нашей задаче индекс образования по формуле (113):

IОБР = 2/3*0,82 + 1/3*0,65 = 0,763.

Находим индекс ожидаемой при рождении продолжительности жизни по формуле (114): Методические указания по теме. Задача 1.По приведенным в следующей таблице данным (первые три столбца) о - student2.ru = (63 – 25)/(85 – 25) = 0,633.

Определяем максимальный ВВП по формуле (117):

ВВПM = 5120*1,0314 = 7744,459.

Индекс валового внутреннего продукта находим по формуле (116):

IВВП = (1200*1,1–100)/(7744,459–100) = 0,160.

ИРЧП по определяем по формуле (112):

ИРЧП = (0,763 + 0,633 + 0,160) / 3 = 0,519.

Наши рекомендации