Числовые характеристики

Математическим ожиданием дискретной случайной величины называется:

Числовые характеристики - student2.ru Числовые характеристики - student2.ru ( 4.4)

В случае бесконечного множества значений Числовые характеристики - student2.ru в правой части (4.4) находится ряд, и мы будем рассматривать только те значения Х, для которых этот ряд абсолютно сходится.

М(Х) представляет собой среднее ожидаемое значение случайной величины. Оно обладает следующими свойствами:

1) М(С)=С, где С=const

2) M (CX)=CM (X) (4.5)

3) M (X+Y)=M(X)+M(Y), для любых Х и Y. Числовые характеристики - student2.ru

4) M (XY)=M (X)M(Y), если Х и Y независимы.

Для оценки степени рассеяния значений случайной величины около ее среднего значения M(X)=авводятся понятия дисперсии D(X) и среднего квадратического (стандартного) отклонения Числовые характеристики - student2.ru . Дисперсией называется математическое ожидание квадрата разности (X- Числовые характеристики - student2.ru ), т.е. :

D(X)=M(X- Числовые характеристики - student2.ru )2= Числовые характеристики - student2.ru pi,

Числовые характеристики - student2.ru где Числовые характеристики - student2.ru =М(X); Числовые характеристики - student2.ruопределяется как квадратный корень из дисперсии, т.е. Числовые характеристики - student2.ru .

Для вычисления дисперсии пользуются формулой:

Числовые характеристики - student2.ru (4.6)

Свойства дисперсии и среднего квадратического отклонения:

1) D(C)=0, где С=сonst

2) D(CX)=C2D(X), Числовые характеристики - student2.ru (CX)= çCç Числовые характеристики - student2.ru (X) (4.7)

3) D(X+Y) =D(X)+D(Y), Числовые характеристики - student2.ru

если Х и У независимы.

Размерность величин Числовые характеристики - student2.ru и Числовые характеристики - student2.ru совпадает с размерностью самой случайной величины Х, а размерность D(X) равна квадрату размерности случайной величины Х.

4.3. Математические операции над случайными величинами.

Пусть случайная величина Х принимает значения Числовые характеристики - student2.ru с вероятностями Числовые характеристики - student2.ru а случайная величина Y- значения Числовые характеристики - student2.ru с вероятностями Числовые характеристики - student2.ru Произведение КX случайной величины Х на постоянную величину К - это новая случайная величина, которая с теми же вероятностями , что и случайная величина Х, принимает значения, равные произведениям на К значений случайной величины Х. Следовательно, ее закон распределения имеет вид таблица 4.2:

Таблица 4.2

Числовые характеристики - student2.ru Числовые характеристики - student2.ru Числовые характеристики - student2.ru ... Числовые характеристики - student2.ru
Числовые характеристики - student2.ru Числовые характеристики - student2.ru Числовые характеристики - student2.ru ... Числовые характеристики - student2.ru

Квадрат случайной величины Х, т.е. Числовые характеристики - student2.ru , - это новая случайная величина ,которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные квадратам ее значений.

Сумма случайных величин Х и У - это новая случайная величина, которая принимает все значения вида Числовые характеристики - student2.ru с вероятностями Числовые характеристики - student2.ru , выражающими вероятность того, что случайная величина Х примет значение Числовые характеристики - student2.ru а У - значение Числовые характеристики - student2.ru , то есть

Числовые характеристики - student2.ru (4.8)

Если случайные величины Х и У независимы, то:

Числовые характеристики - student2.ru (4.9)

Аналогично определяются разность и произведение случайных величин Х и У.

Разность случайных величин Х и У - это новая случайная величина, которая принимает все значения вида Числовые характеристики - student2.ru , а произведение - все значения вида Числовые характеристики - student2.ru с вероятностями, определяемыми по формуле (4.8), а если случайные величины Х и У независимы, то по формуле (4.9).

4.4. Распределения Бернулли и Пуассона.

Рассмотрим последовательность n идентичных повторных испытаний, удовлетворяющих следующим условиям:

1. Каждое испытание имеет два исхода, называемые успех и неуспех.

Эти два исхода - взаимно несовместные и противоположные события.

2. Вероятность успеха, обозначаемая p, остается постоянной от испытания к испытанию. Вероятность неуспеха обозначается q.

3. Все n испытаний - независимы . Это значит, что вероятность наступления события в любом из n повторных испытаний не зависит от результатов других испытаний.

Вероятность того, что в n независимых повторных испытаниях, в каждом из которых вероятность появления события равна Числовые характеристики - student2.ru , событие наступит ровно m раз ( в любой последовательности), равна

Числовые характеристики - student2.ru (4.10)

где q=1-р.

Выражение (4.10) называется формулой Бернулли.

Вероятности того, что событие наступит:

а) менее m раз,

б) более m раз,

в) не менее m раз,

г) не более m раз - находятся соответственно по формулам:

Числовые характеристики - student2.ru

Биномиальным называют закон распределения дискретной случайной величины Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события равна р; вероятности возможных значений Х = 0,1,2,..., m,...,n вычисляются по формуле Бернулли (таблица 4.3).

Таблица 4.3

Число успехов Х=m         ...   m   ...   n
Вероятность Р Числовые характеристики - student2.ru Числовые характеристики - student2.ru Числовые характеристики - student2.ru   Числовые характеристики - student2.ru   Числовые характеристики - student2.ru   Числовые характеристики - student2.ru   ...   Числовые характеристики - student2.ru   ...   Числовые характеристики - student2.ru

Так как правая часть формулы (4.10) представляет общий член биноминального разложения Числовые характеристики - student2.ru , то этот закон распределения называют биномиальным. Для случайной величины Х, распределенной по биноминальному закону, имеем:

M(X)=nр (4.11)

D(X)=nрq (4.12)

Если число испытаний велико, а вероятность появления события р в каждом испытании очень мала, то вместо формулы (4.10) пользуются приближенной формулой:

Числовые характеристики - student2.ru (4.13)

где m - число появлений события в n независимых испытаниях, Числовые характеристики - student2.ru ( среднее число появлений события в n испытаниях).

Выражение (4.13) называется формулой Пуассона. Придавая m целые неотрицательные значения m=0,1,2,...,n, можно записать ряд распределения вероятностей, вычисленных по формуле (4.13), который называется законом распределения Пуассона (таблица 4.4):

Таблица 4.4

M ... m ... n
Pn;m Числовые характеристики - student2.ru Числовые характеристики - student2.ru Числовые характеристики - student2.ru ... Числовые характеристики - student2.ru ... Числовые характеристики - student2.ru

Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства. Например, число машин, прибывших на автомойку в течении часа, число дефектов на новом отрезке шоссе длиной в 10 километров, число мест утечки воды на 100 километров водопровода, число остановок станков в неделю, число дорожных происшествий.

Если распределение Пуассона применяется вместо биномиального распределения, то n должно иметь порядок не менее нескольких десятков, лучше нескольких сотен, а nр< 10.

Математическое ожидание к дисперсии случайной величины, распределенной по закону Пуассона, совпадают и равны параметру Числовые характеристики - student2.ru , которая определяет этот закон, т.е.

M(X)=D(X)=n×p= Числовые характеристики - student2.ru . (4.14)

Наши рекомендации