Случайная погрешность: численные характеристики воспроизводимости
Погрешности и неопределенности измерений. Точность и ее составляющие
Любой измерительный процесс подвержен действию множества факторов, искажающих результаты измерения. Отличие результата измерения от истинного значения измеряемой величины называется погрешностью. Ввиду того, что любой результат измерения, вообще говоря, содержит погрешность, точное значение измеряемой величины никогда не может быть установлено. Однако возможно указать некоторый диапазон значений, в пределах которого может, с той или иной степенью достоверности, находиться истинное значение. Этот диапазон называется неопределенностью результата измерения. Оценка неопределенности результатов химического анализа является важнейшей задачей химической метрологии.
В суммарную неопределенность результата измерения вносят вклад погрешности двух различных типов. Пусть в результате однократного измерения некоторой величины получено значение x*, отличающееся от истинного значения x0 (рис. 2, а). Повторим измерение еще несколько раз. Возможные варианты взаимного расположения серии измеренных значений и истинного значения показаны на рис. 2, б и 2, в. В первом случае (рис. 2, б) имеет место смещение всей серии данных (и ее среднего) относительно истинного значения. Соответствующая составляющая неопределенности называется систематической погрешностью. Во втором случае (рис. 2, в) наблюдается разброс данных относительно среднего значения из результатов измерения. Такая составляющая неопределенности называется случайной погрешностью. Разумеется, в реальном случае мы всегда имеем и систематическую, и случайную составляющую. Так, на рис. 2, б наряду со значительным смещением данных мы видим и некоторый их разброс, а на рис 2, в - на фоне большого разброса незначительное смещение среднего относительно истинного. Происхождение систематических и случайных погрешностей связано с различной природой факторов, воздействующих на измерительный процесс. Факторы постоянного характера или мало изменяющиеся от измерения к измерению вызывают систематические погрешности, быстро
изменяющиеся факторы - случайные погрешности.
С понятиями систематической и случайной погрешностей тесно связаны два важнейших метрологических понятия - правильность и воспроизводимость. Правильностью называется качество результатов измерения (или измерительной процедуры в целом), характеризующее малость систематической погрешности, воспроизводимостью - качество, характеризующее малость случайной погрешности. Иными словами, правильность результатов - это их несмещенность, а воспроизводимость - их стабильность. Обобщающее понятие, характеризующее малость любой составляющей неопределенности - как систематической, так и случайной, - называется точностью. Мы назовем результаты точными только в том случае, если для них мала как систематическая, так и случайная погрешность. Таким образом, правильность и воспроизводимость - это две составляющие точности, называемые поэтому точностными характеристиками.
В химической метрологии традиционно принято оценивать точностные характеристики по отдельности. Рассмотрим основные способы количественной оценки воспроизводимости и правильности результатов химического анализа.
Случайная погрешность: численные характеристики воспроизводимости
Поскольку воспроизводимость характеризует степень рассеяния данных относительно среднего значения, для оценки воспроизводимости необходимо предварительно вычислить среднее из серии результатов повторных (параллельных) измерений x1, x2, ... xn:
(9)
Отметим, что в обрабатываемой серии должны отсутствовать промахи - отдельные значения, резко отличающиеся от остальных и, как правило, полученные в условиях грубого нарушения измерительной процедуры (аналитической методики). Поэтому прежде всего (еще до вычисления среднего) следует с помощью специальных статистических тестов (с. 21) и, если возможно, путем детального изучения условий эксперимента проверить серию данных на наличие промахов и, при обнаружении таковых, исключить их из рассмотрения.
В качестве меры разброса данных относительно среднего чаще всего используют дисперсию
(10)
и производные от нее величины - (абсолютное) стандартное отклонение
(11)
и относительное стандартное отклонение
(12)
По смыслу дисперсия есть усредненная величина квадрата отклонения результата измерения от своего среднего значения. Несмотря на то, что числитель выражения (10) содержит n слагаемых, знаменатель равен n-1. Причина состоит в том, что среди n слагаемых числителя только n-1 независимых (поскольку по n-1 значениям xi и среднему всегда возможно вычислить недостающее n-е слагаемое). Величина знаменателя в выражении (10) обозначается f (или n) и называется числом степеней свободы дисперсии s2(x). Оно играет очень важную роль при статистической проверке различных гипотез (с. 14).
В химическом анализе для характеристики воспроизводимости обычно используют не дисперсию, а абсолютное или - чаще всего - относительное стандартное отклонение. Это объясняется соображениями практического удобства. Размерности s(x) и x совпадают, поэтому абсолютное стандартное отклонение можно непосредственно сопоставлять с результатом анализа. Величина же sr(x) - безразмерная и потому наиболее наглядная. С помощью относительных стандартных отклонений можно сравнивать между собой воспроизводимости не только конкретных данных, но и различных методик и даже методов в целом.
Среди всех существующих методов химического анализа наилучшие воспроизводимости (т.е. наименьшие sr) характерны прежде всего для "классических" химических методов анализа - титриметрии и, особенно, гравиметрии. В оптимальных условиях типичные величины sr для них составляют порядка n.10-3 (десятые доли процента). Среди инструментальных методов такой же (а в ряде методик - и более высокой) воспроизводимостью обладает кулонометрия, особенно в прямом варианте (до n.10-4). Большинство прочих инструментальных методов характеризуются величинами sr от 0.005 до 0.10. Методы с еще более низкой воспроизводимостью относятся к полуколичественным. Они часто отличаются исключительной простотой, экспрессностью, экономичностью (тест-методы) и очень полезны, например, для быстрой оценки состояния окружающей среды.
Подчеркнем, что любые величины sr, приводимые для методик (тем более методов) в целом, являются лишь ориентировочными и обычно относятся лишь к оптимальным условиям их выполнения. В иных условиях - особенно при понижении содержания определяемого компонента (с. 27) эти величины могут быть значительно (на порядок и более) выше.