Построим график Эмпирической функции

Курсовая работа

«МАТЕМАТИЧЕСКАЯ ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ»

(10 ВАРИАНТ)

Рецензент:

____________Клевец В.В

подпись

___________________

оценка дата

Разработала:

Студентка группы 62-4

Кожокару А.Г,

Степанов Е.О

___________________

дата сдачи подпись

Красноярск

Построим график Эмпирической функции - student2.ru __________

Федеральное агентство по образованию Российской Федерации

ГОУ ВПО "Сибирский государственный технологический университет"

Кафедра математики и информатики

ЗАДАНИЕ для курсовой работы

Студент Кожокару А.Г, Степанов Е.О

ФакультетХТ гр. 62-5

Тема курсовой работы: Математическая обработка статистических данных.

Приводятся результаты 100 наблюдений (Таблица.1) над некоторой случайной двумерной величиной Х(стаж работы) и У(среднегодовое превышение нормы)

Цель курсовой работы для каждой случайной величины Х(стаж работы) и У(среднегодовое превышение нормы) выполнить следующие исследования:

1. Построить интервальный и дискретный статистические ряды распределения частот и относительных частот.

2. Построить гистограмму и полигон относительных частот.

3. Найти эмпирическую функцию распределения и построить ее график.

4. Вычислить числовые характеристики выборки: выборочную среднюю, выборочную дисперсию, выборочное среднее квадратическое отклонение, выборочные коэффициенты асимметрии и эксцесса.

5. Сделать предварительный выбор закона распределения наблюдаемой случайной величины, исходя из механизма ее образования, по виду гистограммы и полигона относительных частот и по значения выборочных коэффициентов асимметрии и эксцесса .

6. Найти точечные оценки параметров нормального закона распределения, предполагая, что наблюдаемая случайная величина распределена по нормальному закону, и записать функцию плотности распределения вероятностей.

7. Проверить с помощью критерия согласия Пирсона гипотезу о том, что выборка извлечена из генеральной совокупности с предполагаемым нормальным законом распределения.

8. В случае принятия гипотезы найти интервальные оценки параметров нормального закона распределения.

9. Провести корреляционный анализ:

а) составить корреляционную таблицу;

б) найти выборочный коэффициент корреляции;

в) проверить значимость выборочного коэффициента корреляции

rв при а=0.05(Но:р=0), при альтернативной гипотезе НаПостроим график Эмпирической функции - student2.ru 0;

г) построить корреляционное поле и по характеру расположения точек на нем подобрать общий вид функции регрессии;

д) найти эмпирические функции регрессии У(среднегодовое превышение нормы) на Х(стаж работы),Х(стаж работы) на У(среднегодовое превышение нормы) и построить их графики.

Задание выдано ___08.12.2011

Руководитель______________

ВВедение

Обработка статистических данных уже давно применяется в самых разнообразных видах человеческой деятельности. Вообще говоря, трудно назвать ту сферу, в которой она бы не использовалась.

Всесторонний и глубокий анализ информации, так называемых статистических данных, предполагает использование различных специальных методов сбора и обработки статистических данных для получения научных и практических выводов.

Итак, задачи математической статистики состоят в указании способа сбора и группировки статистических сведений, полученных в результате наблюдений и в разработке методов анализа статистических данных в зависимости от целей исследования

Данная работа посвящена обработки статистических данных результата стажа работы и среднегодовых превышений нормы

Построим график Эмпирической функции - student2.ru

Вариант 10

Построим график Эмпирической функции - student2.ru

Результат стажа работы(Х, год) и среднегодовое превышение норм (У, %) приведены в таблице.1

ТАБЛИЦА.1

Сводная таблица наблюдаемых значений случайных величин Х(стажа работы) и У(среднегодовое превышение нормы)

Х У Х У Х У Х У Х У

Требуется провести статистическую обработку экспериментальных данных пунктов 1-9 согласно заданию для курсовой работы

Построим график Эмпирической функции - student2.ru

Содержание

введение.............................................................................................................................................3

Задание...............................................................................................................................................4

Таблица наблюдаемых значений......................................................................................5

СТАТИСТИЧЕСКАЯ ОБРАБОТКА СЛУЧАЙНОЙ ВЕЛЕЧИНЫ Х(стаж работы).............. ........6

  • пункт 1 Интервальный и дискретный статистические ряды распределения

частот и относительных частот......................................................................................................6

  • пункт 2Гистограмма и полигон относительных частот....................................................7
  • пункт 3 Эмпирическая функция распределения и ее график............................................7
  • пункт 4 Числовые характеристики выборки.......................................................................8
  • пункт 5 Предварительный выбор закона распределения наблюдаемой случайной величины...................................................................................................................................10
  • пункт 6Точечные оценки параметров нормального закона распределения..................11
  • пункт 7Гипотеза о том, что выборка извлечена из генеральной совокупности с предполагаемым нормальным законом распределения ......................................................11
  • пункт 8 Интервальные оценки параметров нормального закона распределения .........14

СТАТИСТИЧЕСКАЯ ОБРАБОТКА СЛУЧАЙНОЙ ВЕЛЕЧИНЫ У(среднегодовое превышение нормы)....................................................................................................................................................15

  • пункт 1 Интервальный и дискретный статистические ряды распределения
  • частот и относительных частот...............................................................................................15
  • пункт 2Гистограмма и полигон относительных частот...................................................16
  • пункт 3 Эмпирическая функция распределения и ее график...........................................16
  • пункт 4 Числовые характеристики выборки......................................................................17
  • пункт 5 Предварительный выбор закона распределения наблюдаемой случайной величины...................................................................................................................................19
  • пункт 6Точечные оценки параметров нормального закона распределения..................20
  • пункт 7Гипотеза о том, что выборка извлечена из генеральной совокупности с предполагаемым нормальным законом распределения ......................................................20
  • пункт 8 Интервальные оценки параметров нормального закона распределения..........23

ПУНКТ 9 Корреляционный анализ...................................................................................................24

Вывод.................................................................................................................................................28

Заключение...................................................................................................................................29

Список использованной литературы ..........................................................................30

Построим график Эмпирической функции - student2.ru СТАТИСТИЧЕСКАЯ ОБРАБОТКА СЛУЧАЙНОЙ ВЕЛЕЧИНЫ У(Среднегодовое превышение нормы)

ПУНКТ 1 Интервальный и дискретный статистические ряды распределения частот и относительных частот.

Статистическая обработка результатов эксперимента в случае выборки большого объема(n> 50) начинается с группировки выборочных значений, то есть с разбиения наблюдаемых значений Случайной Величины на k частичных интервалов равной длины и подсчета частот попаданий значений Случайной Величины в частичные интервалы.

Сделаем группировку наблюдаемых значений. Оптимальную длину интервала определим по формуле Стэрджеса:

Построим график Эмпирической функции - student2.ru ,

где Уmax , Уmin –соответственно максимальное и минимальное выборочные значения СВ У(Среднегодовое превышение нормы), n—объем выборки.

Для СВ У(Среднегодовое превышение нормы) n=100, Уmax =8, Уmin=2. Следовательно, Построим график Эмпирической функции - student2.ru

а1= Уmin-- Построим график Эмпирической функции - student2.ru =2-- Построим график Эмпирической функции - student2.ru =2—0.4=1.6

а2= а1+h=1.6+0.8=2.4

Составим таблицу (таб.5) Таблица.5

Вспомогательная таблица для расчета числовых характеристик выборки

интервалы (аi;ai+1) середины интервалов подсчет частот   частоты ni относит. частоты Wi=ni/n накопительные относительные частоты
(1.6;2.4]     0.01 0.01
(2.4;3.2]   2.8 Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru 0.09 0.1
(3.2;4]   3.6 Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru 0.22 0.32
(4;4.8]   4.4   0.32
(4.8;5.6]   5.2 Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru 0.33 0.65
(5.6;6.4]   Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru 0.17 0.82
(6.4;7.2]   6.8 Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru 0.14 0.96
(7.2;8]   7.6   0.04 1.00

Построим график Эмпирической функции - student2.ru ПУНКТ 2 Гистограмма и полигон относительных частот

Первый и пятый столбцы таблицы 5 составляют интервальный статистический ряд относительных частот, графическое изображение которого—гистограмма относительных частот (ступенчатая фигура на рис.4)

Дискретный статистический ряд относительных частот задается вторым и пятыми столбцами, графическое изображение, которого—полигон относительных частот (изображен на рис.4 ломаной линией)

Построим график Эмпирической функции - student2.ru

Рис.4—гистограмма и полигон относительных частот

ПУНКТ 3 Эмпирическая функция распределения и ее график

Эмпирическая функция распределения F*(у) выборки служит для оценки функции распределения F(у) генеральной совокупности.

Функция F*(у) определяет для каждого значения У(среднегодовое превышение нормы) относительную частоту событий Х<х:

F*(у)= Построим график Эмпирической функции - student2.ru ,

где nу-число выборочных значений, меньших у; n-объем выборки.

Шестой столбец таблицы 5 содержит накопленные частоты, то есть значения эмпирической функции распределения F*(у), они относятся к верхней границе частного интервала.

Эмпирическая функция распределения F*(у) имеет вид:

F*(у)= Построим график Эмпирической функции - student2.ru

График эмпирической функции распределения F*(у) изображен на рис.5

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru рис.5—График эмпирической функции распределения

ПУНКТ 4 Числовые характеристики выборки

Для вычисления числовых характеристик выборки (у, Ду, Sу*, Эу*) удобно использовать таблицу.6,где в первых двух столбцах приведены сгруппированные исходные данные, а остальные столбцы служат для вычисления числовых характеристик
Таблица 6

Таблица для расчета числовых характеристик выборки

середин интервалов уi Частоты ni   уi—у   (уi—у )ni   (уi—у )2ni   (уi—у )3ni   (уi—у )4ni
-3.056 -3.056 9.339 -28.540 87.219
2.8 -2.256 -20.304 45.805 -103.338 233.130
3.6 -1.456 -32.032 46.639 -67.905 98.870
4.4 -0.656
5.2 0.144 4.752 0.062 0.098 0.014
0.944 16.048 15.149 14.300 13.500
6.8 1.744 24.416 42.581 74.262 129.513
7.6 2.544 10.176 25.887 65.858 167.543
Σ - 185.462 45.265 729.789

Выборочное среднее вычисляется по формуле:

Построим график Эмпирической функции - student2.ru ,

где m—число интервалов, хi—середины интервалов

Построим график Эмпирической функции - student2.ru

Выборочное среднее Построим график Эмпирической функции - student2.ru дает усредненное значение среднегодового превышения нормы для данной выборки.

Выборочную дисперсию для сгруппированных данных вычисляют по формуле:

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru

Выборочное среднее квадратическое отклонение находят по формуле:

Построим график Эмпирической функции - student2.ru .

Для СВ У(среднегодовое превышение нормы) Sу= Построим график Эмпирической функции - student2.ru

Оно показывает разброс выборочных значений уi, относительно выборочного среднего у=7.988

Выборочные коэффициенты асимметрии и эксцесса вычисляются по формулам:

Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru

Используя суммы из последних строк шестого и седьмого столбцов таблицы 5,

получим:

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru 0 говорит о несимметричности полигона (гистограммы) относительно выборочного среднего Построим график Эмпирической функции - student2.ru . Отрицательный знак выборочного коэффициента асимметрии Построим график Эмпирической функции - student2.ru свидетельствует о левосторонней асимметрии данного распределения

ПУНКТ 5 Предварительный выбор закона распределения наблюдаемой случайной величины У(среднегодовое превышение нормы)

Мы предварительно предполагаем, что СВУ(среднегодовое превышение нормы) распределена нормально по совокупности следующих признаков.

Вид полигона и гистограммы относительных частот напоминает нормальную кривую (кривую Гаусса)

Выборочные коэффициенты асимметрии Построим график Эмпирической функции - student2.ru и эксцесса Построим график Эмпирической функции - student2.ru

отличаются от значений асимметрии и эксцесса для нормального распределения (которые равны нулю) не более чем на утроенные средние квадратические ошибки

их определения.

Построим график Эмпирической функции - student2.ru ,

Построим график Эмпирической функции - student2.ru ,

где

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru Можно предположить, что стаж работы (СВ У) изменяется под влиянием большого числа факторов, примерно равнозначных по силе.

Итак, по совокупности указанных признаков можно предположить, что распределение СВ У(среднегодовое превышение нормы) является нормальным

ПУНКТ 6 Точечные оценки параметров нормального закона распределения

Функция плотности нормального распределения имеет вид

Построим график Эмпирической функции - student2.ru

В качестве неизвестных параметров а и σ возьмем их точечные оценки Построим график Эмпирической функции - student2.ru и Sу= Построим график Эмпирической функции - student2.ru соответственно. Тогда дифференциальная f(у) и интегральная функции F(у) предполагаемого нормального закона распределения примут вид:

Построим график Эмпирической функции - student2.ru ; Построим график Эмпирической функции - student2.ru

ПУНКТ 7 Гипотеза о том, что выборка извлечена из генеральной совокупности с предполагаемым нормальным законом распределения

Гипотезу о том, что генеральная совокупность, из которой извлечена выборка, распределена по предлагаемому нормальному закону, назовем нулевой

о:У N(a,σ)), тогда На:У N(a, σ)

Проверяем ее с помощью критерии согласия χ2 Пирсона.

Согласно критерию Пирсона сравниваются эмпирические ni(наблюдаемые) и теоретические npi(вычисленные в предложении нормального распределения)

частоты. В качестве критерия проверка нулевой гипотезы принимается случайная величина.

Построим график Эмпирической функции - student2.ru

По таблице критических точек распределения χ2 по заданному

уровню значимости а и числу степеней свободы v=S-r-1 находим критическое

значение χ2крит(а,v)

Если проверяется гипотеза о нормальном распределении, то вероятности pi рассчитываются с помощи функции Лапласа Ф(х):

Построим график Эмпирической функции - student2.ru

где у=5.056, Sу=1.36

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru Вычисления сведем в таблицу.7 Количество интервалов S=6.

Так как предполагается нормальное распределение имеющее два параметра(математическое ожидание а и среднее квадратические отклонение σ), поэтому r=2, тогда число степеней свободы v=S-r-1=6-2-1=3

Построим график Эмпирической функции - student2.ru

 
 

Таблица 7

Расчетная таблица для вычисления Построим график Эмпирической функции - student2.ru

интервалы (хii+1) частоты эмпирические ni Вероятности рi Теоретические частоты npi Построим график Эмпирической функции - student2.ru
(-∞;2.4]   0.02559 2.56 0.9506
(2.4;3.2]   0.06141 6.14 0.0596
(3.2;4]   0.13365 13.37 5.5704
(4;4.8]   0.204 20.4 20.4
(4.8;5.6]   0.23077 23.08 4.2637
(5.6;6.4]   0.18349 18.35 0.1038
(6.4;7.2]   0.10404 10.40 1.2461
(7.2;+ ∞]   0.05705 5.70 0.5070
Σ 1.00 Построим график Эмпирической функции - student2.ru 33.098

Значение Построим график Эмпирической функции - student2.ru =33.098

В таблицах критических точек распределения Построим график Эмпирической функции - student2.ru по уровню значимости а=0.05 и числу степеней свободы v=3 найдем критическое значение χ2крит(0.05,3) =7.815

Так как условие Построим график Эмпирической функции - student2.ru < χ2крит не выполняется будем считать, что гипотеза не согласуется с экспериментальными данными и ее надо отвергнуть

Построим график Эмпирической функции

Построим график Эмпирической функции - student2.ru

Построим график Эмпирической функции - student2.ru рис.6—График эмпирической функции и полигона

Наши рекомендации