Основатели теории вероятности
Блез Паска́ль (фр. Blaise Pascal; 19 июня 1623, Клермон-Ферран, Франция — 19 августа 1662, Париж, Франция) — французский математик, механик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики. С 1658 года здоровье Паскаля быстро ухудшается. Согласно современным данным, в течение всей жизни Паскаль страдал от комплекса заболеваний: рака головного мозга, кишечного туберкулёза и ревматизма. Его одолевает физическая слабость, появляются ужасные головные боли. Гюйгенс, посетивший Паскаля в 1660 году, нашёл его глубоким стариком, несмотря на то, что в тот момент Паскалю было всего 37 лет. Паскаль понимает, что скоро умрёт, но не испытывает страха перед смертью, говоря сестре Жильберте, что смерть отнимает у человека «несчастную способность грешить». | |
Пьер де Ферма́ (фр. Pierre de Fermat, 17 августа 1601(16010817) — 12 января 1665) — французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе. Блестящий полиглот. Наиболее известен формулировкой Великой теоремы Ферма. | |
Христиа́н Гю́йгенс ван Зёйлихем (нидерл. Christiaan Huygens;14 апреля 1629, Гаага — 8 июля 1695, там же) — нидерландский механик, физик, математик, астроном и изобретатель. | |
Я́коб Берну́лли (нем. Jakob Bernoulli, 6 января 1655, Базель, — 16 августа 1705, там же) — швейцарский математик. Один из основателей теории вероятностей и математического анализа. Старший брат Иоганна Бернулли, совместно с ним положил начало вариационному исчислению. Доказал частный случай закона больших чисел — теорему Бернулли. Профессор математики Базельского университета (с 1687 года). Иностранный член Парижской академии наук (1699) и Берлинской академии наук (1702). | |
Андре́й Никола́евич Колмого́ров (урождённый Катаев, 12 (25) апреля 1903, Тамбов — 20 октября 1987, Москва) — советский математик, один из крупнейших математиков ХХ века. Колмогоров — один из основоположников современной теории вероятностей, им получены основополагающие результаты в топологии, геометрии, математической логике, классической механике, теории турбулентности, теории сложности алгоритмов, теории информации, теории функций, теории тригонометрических рядов, теории меры, теории приближения функций, теории множеств, теории дифференциальных уравнений, теории динамических систем, функциональном анализе и в ряде других областей математики и её приложений. |
Этапы развития.
Начало формирования во второй половине XVII века основных понятий и методов теории вероятностей для случайных величин с конечным числом значений. Стимулом вначале служили преимущественно проблемы, возникающие в азартных играх, однако область применения теории вероятностей почти сразу начинает расширяться, включая в себя прикладные задачи демографической статистики, страхового дела и теории приближённых вычислений. На этом этапе важный вклад в идеи новой науки внесли Паскаль и Ферма. Гюйгенс ввёл два фундаментальных понятия: числовая мера вероятности события, а также понятие математического ожидания случайной величины.
Следующий период развития теории вероятностей связан прежде всего с Петербургской математической школой. За два столетия развития теории вероятностей главными ее достижениями были предельные теоремы. Но не были выяснены границы их применимости и возможности дальнейшего обобщения. Наряду с огромными успехами, достигнутыми теорией вероятностей в предыдущий период, были выявлены и существенные недостатки в ее обосновании, это в большой мере относится к недостаточно четким представлениям о вероятности.
В теории вероятностей создалось положение, когда дальнейшее ее развитие требовало уточнения основных положений, усиления самих методов исследования. Это было осуществлено русской математической школой во главе с П. Л. Чебышевым. Среди ее крупнейших представителей мы видим А. А. Маркова и А. М. Ляпунова. В этот период в теорию вероятностей входят оценки приближений предельных теорем, а также происходит расширение класса случайных величин, подчиняющихся предельным теоремам. В это время в теории вероятностей начинают рассматривать некоторые зависимые случайные величины (цепи Маркова).
Понятие вероятности получило большое распространение в естественных науках, в первую очередь это относится к физике. Появляются работы Максвелла, а затем Больцмана и Д. Гиббса. Их трудами создается статистическая физика. Но это внедрение вероятностных методов и понятий в физику шло в довольно большом отрыве от достижений теории вероятностей.
Развитие теории вероятностей в начале ХХ в. привело к необходимости пересмотра и уточнения ее логических основ, в первую очередь понятия вероятности. Следует иметь в виду и то, что к началу ХХ в. аксиоматический метод стал проникать во многие области математики (работы Д. Гильберта, Пеано и др.), что также оказало влияние на теорию вероятностей. В результате всего этого возникла необходимость аксиоматизации теории вероятностей и ее основного понятия — вероятности.
Современный период развития теории вероятностей начался с установления аксиоматики. Этого прежде всего требовала практика, так как для успешного применения теории вероятностей в физике, биологии и других областях науки, а также в технике и военном деле необходимо было уточнить и привести в стройную систему ее основные понятия. Благодаря аксиоматике теория вероятностей стала абстрактно-дедуктивной математической дисциплиной, тесно связанной с другими математическими дисциплинами. Это обусловило небывалую широту исследований по теории вероятностей и ее применениям, начиная от хозяйственно-прикладных вопросов и кончая самыми тонкими теоретическими вопросами теории информации и теории случайных процессов.
Первые работы этого периода связаны с именами С. Н, Бернштейна, Р. Мизеса, Э. Бореля. Окончательное установление аксиоматики произошло в 30-е годы ХХ в. Анализ тенденций развития теории вероятностей позволил А. Н. Колмогорову создать общепринятую аксиоматику.
В этот период понятие вероятности проникает почти во все сферы человеческой деятельности, становясь одним из основных понятий современной науки. Возникают самые различные определения вероятности, несводимые друг к другу. Многообразие определений основных понятий — существенная черта современной науки, и понятие вероятности не исключение.