Проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних

Пусть генеральные совокупности X и Y распределены нормально, причем их дисперсии известны (из предшествующего опыта или найдены теоретически). По независимым выборкам объемов п1 и п2извлеченным из этих совокупностей, определены статистические оценки математического ожидания проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru и проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru .

Требуется по этим оценкам, при заданном уровне значимости α, проверить нулевую гипотезу, состоящую в том, что математические ожидания рассматриваемых совокупностей равны между собой.

Если окажется, что нулевая гипотеза справедлива, то различие статистических оценок математических ожиданий (выборочных средних) незначимо и объясняется случайными причинами, в частности случайным отбором объектов выборки.

Например, если физические величины А и В имеют одинаковые истинные размеры, а выборочные средние проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru и проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru . результатов измерений этих величин различны, то это различие незначимое.

Если нулевая гипотеза будет отвергнута, то различие выборочных средних значимо и не может быть объяснено случайными причинами, а объясняется тем, что сами генеральные средние различны.

В качестве критерия проверки нулевой гипотезы принимают случайную величину, имеющую нормальное распределение

Критическая область строится в зависимости от вида конкурирующей гипотезы, при этом рассматриваются три случая.

1. Нулевая гипотеза Н0: М[Х] = М[Y].

Конкурирующая гипотеза H1: М[Х] проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru М[Y].

В этом случае строят двустороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости α.

Вычисляется наблюдаемое значение критерия (2.2):

проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru (2.2)

Вычисляется значение функции Лапласа в критической точке:

Ф(zкр) = 1-α

По значению функции Лапласа (см. приложение 2) определяют критическую точку zкp.

Если |ZB| < zкp нет оснований отвергнуть нулевую гипотезу.

Если |ZB| > zкp, нулевую гипотезу отвергают.

2. Нулевая гипотеза H0: М[Х] = M[Y].

Конкурирующая гипотеза H1: М[Х] >М[Y].

На практике такой случай имеет место, если практические соображения позволяют предположить, что генеральная средняя одной совокупности больше генеральной средней другой совокупности. Например, если введено усовершенствование технологического процесса, то естественно допустить, что оно приведет к увеличению выпуска продукции.

В этом случае строят правостороннюю критическую область.

Вычисляются наблюдаемое значение критерия по формуле (2.3) и значение функции Лапласа в критической точке:

Ф(zкр) = 1-α2 (2.3)

По значению функции Лапласа определяют критическую точку zкp.

Если zB < zкр, нет оснований отвергнуть нулевую гипотезу.

Если zB > zкр, нулевую гипотезу отвергают.

3. Нулевая гипотеза H0: М[X] = M[Y].

Конкурирующая гипотеза H1: М[Х] < М[Y].

В этом случае строят левостороннюю критическую область. Приняв во внимание, что критерий Z распределен симметрично относительно нуля, для нахождения критической точки необходимо ее определить, как во втором случае, а затем взять найденное значение со знаком «минус».

Если zB > -ZKp, нет оснований отвергнуть нулевую гипотезу.

Если zB < -zкр, нулевую гипотезу отвергают.

Пример 2.2. Имеются две независимые выборки изделий из генеральных совокупностей X и Y, (табл. 2.4) генеральные дисперсии известны: проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru = 25,0, проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru = 4,0.

Таблица 2.4. Результаты замеров

Пресс 1 -Х 6,63 6,64 4,56 9,73 11,56 14,99 14,77 6,33 4,61 5,73
Пресс 2 -У 5,05 5,84 5,74 6,44 7,09 9.82 9.11 7,5 2.89 6,55

При уровне значимости α=0,01 проверить нулевую гипотезу Н0:

М[Х] = М[Y] о равенстве генеральных математических ожиданий при конкурирующей гипотезе H1: М[Х] проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru М[Y].

Решение.

Рассчитываем средние значения выборок:

проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru

проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru

Вычисляем наблюдаемое значение критерия и значение

проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru = 1,15

функции Лапласа в критической точке Ф(zкр) = 1 - α= 0,99.

По значению функции Лапласа по таблице критических точек (см. приложение 2) определяем критическую точку zкр = 2,58.

Так как zB < zKp, нет оснований отвергнуть нулевую гипотезу, т.е. генеральные средние различаются незначимо.

Вероятность значимости для статистики zB определяется следующим образом:

- рассчитывается величина Ө = arctg проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru

- вероятность значимости находится с помощью интерполяции с использованием специальных таблиц Сукхатма (см. Fisher and Yates, 1974), где приведены 1%-е и 5%-е значения z для п1 и п2 равных 6, 8, 12, 24 и проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru , а также для Ө, равного 0°, 15°, 45°, 60°, 75°, и 90°.

Для z=1.15, Ө = arctg проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru =68,3о

с помощью линейной интерполяции находим P(Z проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru z) = 0,25.

В пакете Анализ данных инструмент Двухвыборочный Z-тест для средних используется для проверки гипотезы о различии между средними двух генеральных совокупностей.

В категории Входные данные необходимо указать, кромеИнтервалов переменной 1 и2, Гипотетическую среднюю разность ∆ (для данного теста Excel использует вместо формулы (2.3) зависимость

проверка гипотезы о равенстве средних. двухвыборочный z-tect для средних - student2.ru значения Дисперсий переменной 1 (известной)и 2(известной), а также значение Альфа — уровень значимости α.

Рассмотрим работу пакета анализа для проверки гипотезы о различии между средними.

Наши рекомендации