Завдання відкритої форми з розгорнутою відповіддю
36. У правильній чотирикутній піраміді SABCD (S – вершина) бічне ребро вдвічі більше сторони основи. Знайдіть кут між медіаною трикутника SDC, проведеною з вершини D, та середньою лінією трикутника ASC, що паралельна основі піраміди.
Правильна відповідь : .
Розв’язання(авторський варіант)
Нехай SABCD – задана правильна піраміда, в основі якої лежить квадрат ABCD, і SO її висота. Позначимо сторону основи АВ через а, тоді бічне ребро SA = 2a.
У трикутнику SDC з вершини D проведемо медіану DN, N – середина ребра SC. У трикутнику ASC проведемо середню лінію, паралельну AC. Вона перетинає ребра SA та SC у точках М та N відповідно, AM = MS та SN = NC (за означенням середньої лінії). Оскільки АС лежить у площині ABC і MN || AC, то MN || (ABC). Прямі MN та ND перетинаються в точці N, тому кут MND є шуканим кутом між медіаною DN трикутника SDC і середньою лінією MN трикутника ASC. Позначимо .
Діагональ АС квадрата АВСD дорівнює , тому середня лінія MN = .
Висота SO піраміди перетинає MN в точці L. Оскільки трикутники ASC і SMN є рівнобедреними, то АО = ОС і ML = LN = .
З прямокутного трикутника .
За теоремою Фалеса SL = LO = SO = .
З прямокутного трикутника .
Трикутник DNM рівнобедрений, оскільки DM = DN як медіани рівних трикутників SAD та SCD. Медіана DL є висотою. Отже, трикутник DLN є прямокутним.
З трикутника DLN маємо:
.
Відповідь. .
Схема оцінювання
1. За правильно побудований рисунок до задачі з обґрунтуванням паралельності відповідної середньої лінії до основи учень одержує 1 бал.
2. За обгрунтування рівності двох сторін трикутника MND (DM=DN) учень одержує ще 1 бал.
3. Якщо учень правильно знайшов елементи трикутника DLN, необхідні для знаходження кута , він одержує ще 1 бал.
4. За правильну відповідь учень одержує ще 1 бал.
Таким чином, за правильно розв’язану задачу учень одержує 4 бали.
· Якщо учень не з’єднує точки М і Д на рисунку, а розглядає кут як кут трикутника DLN, то в цьому випадку треба обґрунтувати, що трикутник DLN – прямокутний. Тоді має місце така схема оцінювання :
1. За правильно побудований рисунок до задачі з обґрунтуванням паралельності відповідної середньої лінії до основи учень одержує 1 бал.
2. За обґрунтування того, що учень одержує ще 1 бал.
3. Якщо учень правильно знайшов елементи трикутника DLN, необхідні для знаходження кута , він одержує ще 1 бал.
4. За правильну відповідь учень одержує ще 1 бал.
Таким чином, за правильно розв’язану задачу учень одержує 4 бали.
· Якщо учень для розв’язування задачі використав векторно-координатний метод, то тоді має місце така схема оцінювання:
1. За правильне обґрунтування висоти SO учень одержує 1 бал.
2. За вибір системи координат з поясненням необхідних точок учень одержує ще 1 бал.
3. За обчислення координат цих точок учень одержує ще 1 бал.
4. За правильну відповідь учень одержує ще 1 бал.
Таким чином, за правильно розв’язану задачу учень одержує 4 бали.