Схема электроснабжения
Железнодорожный транспорт СНГ потребляет более 7 % электроэнергии, вырабатываемой электростанциями бывшего Советского Союза. В основном её расходуют на тягу поездов и частично на питание нетяговых потребителей (депо, станций, мастерских, а также районных потребителей).
Согласно Правилам технической эксплуатации устройства электроснабжения железных дорог должны обеспечивать: бесперебойное движение поездов с установленными нормами массы, скоростями и интервалами между поездами при требуемых размерах движения; надежное электропитание
устройств СЦБ и связи, вычислительной техники как электроприемников категории I; надежное электроснабжение всех потребителей железнодорожного транспорта.
В систему электроснабжения электрифицированных дорог (рисунок 2.82) входят устройства, составляющие её внешнюю часть (электростанции, районные трансформаторные подстанции, сети и линии электропередачи) и тяговую часть (тяговые подстанции и электротяговая сеть).
|
ных затрат на сооружение передающих устройств, так как существенно усложняется их изоляция, возрастает ее стоимость.
Чтобы выбрать напряжение, при котором будет передаваться электрическая энергия, производят технико-экономический расчет. Сравнивают различные варианты: в одних из них малы капитальные затраты и существенны эксплуатационные расходы, а в других значительны капиталовложения и невелики расходы в эксплуатации. Для каждого варианта определяют так называемые приведенные затраты, складывающиеся из части капитальных затрат, приходящихся на один год расчетного срока их окупаемости, и годовых эксплуатационных расходов (с учетом амортизационных отчислений). Выбирают обычно вариант с меньшими приведенными затратами. Как правило, принятое для передачи напряжение не равно тому, которое должно быть на зажимах тяговых двигателей электроподвижного состава (ЭПС).
Большое значение имеет также частота передаваемой энергии. В некото-
рых странах применяют ЭПС переменного тока с тяговыми двигателями, рассчитанными на частоту 162/3 или 25 Гц. В этих случаях железные дороги обычно имеют собственные электрические станции, производящие электроэнергию нужной частоты, реже применяют установки для преобразования частоты, принятой в энергосистеме данной страны. Такие электростанции возможно расположить в непосредственной близости от железной дороги, что существенно упрощает передачу энергии к электроподвижному составу.
В бывшем СССР строить электростанции только для нужд железных дорог было признано экономически нецелесообразным, и поэтому частота энергии, поступающей в контактную сеть, такая же, как для остальных потребителей, т. е. 50 Гц – это так называемая промышленная частота.
Устройства, необходимые для выработки электроэнергии и ее передачи к электрической железной дороге, образуют систему внешнего электроснабжения. В нее входят электрические станции, на которых энергия вырабатывается, подстанции, где производится ее преобразование и распределение, а также все линии электропередачи (ЛЭП), связывающие эти электроустановки между собой и с электрической железной дорогой.
Электрические станции. На каждой электростанции имеются различные устройства, вырабатывающие электрическую энергию при сравнительно небольшом напряжении. В машинном зале сосредоточены устройства управления всеми производственными процессами. Кроме того, на территории электростанции находится подстанция, на которой полученное напряжение повышается до значения, необходимого для передачи ее другим электростанциям или районным подстанциям. На каждой районной подстанции устанавливают трансформаторы и монтируют распределительные устройства, через которые электроэнергия направляется по ЛЭП к различным потребителям.
В зависимости от источника энергии различают электростанции тепловые (ТЭС), гидроэлектрические (ГЭС) и атомные (АЭС).
ТЭС работают на твердом, жидком и газообразном топливе, имеют паровые и значительно реже газовые турбины. Их делят на конденсационные (КЭС), вырабатывающие только электрическую энергию, и теплофикационные, или теплоэлектроцентрали (ТЭЦ), которые, кроме электрической, отпускают еще и тепловую энергию. Крупные (мощностью более 1 ГВт) КЭС называют государственными районными электростанциями (ГРЭС).
Тепловая энергия топлива, сжигаемого в котлах ТЭС, превращает в пар воду, подаваемую в котлы. Пар поступает в паровую турбину и приводит во вращение ее вал и вал электрического генератора. Иногда для вращения вала генератора используют двигатели внутреннего сгорания (дизели), работающие на нефтяном топливе. Такие установки имеют относительно небольшую мощность. Их можно выполнить передвижными и применять в качестве резервных.
ГЭС бывают русловыми (сооружаемые в основном в пределах речного русла), приплотинными (их машинные залы расположены вне плотин) и деривационными (использующие естественное понижение местности, например на горных реках).
Плотина – обязательное сооружение ГЭС. Она преграждает путь воде и создает необходимый сосредоточенный напор ее в верхнем бьефе, т. е. в части реки или водохранилища, расположенной по течению выше плотины. Механическая энергия воды, стремящейся из верхнего бьефа в нижний, приводит во вращение вал гидротурбины и вал соединенного с ней электрического генератора. На ГЭС, где возможен суточный или сезонный недостаток воды, иногда ее перекачивают из нижнего бьефа в верхний. Это делается за счет избыточной энергии, вырабатываемой другими электростанциями в те часы, когда потребность в энергии падает (например, ночью). Такие станции называют гидроаккумулирующими (ГАЭС), так как на них происходит накопление потенциальной энергии воды, которая может быть использована для выработки электрической энергии во время максимальных, так называемых пиковых, нагрузок.
Источником тепловой энергии на АЭС является ядерный реактор, в котором происходит управляемая цепная (самоподдерживающаяся) реакция деления ядер урана и образующегося при этом вторичного горючего – плутония. Деление атомных ядер осуществляется под воздействием нейтронов. Чтобы энергия деления атомных ядер (атомная энергия) не выделялась мгновенно (в виде взрыва), а могла быть использована длительно, в реактор вводят различные замедлители (например, графит). В качестве ядерного топлива обычно применяют не чистый уран, а его изотопы – 235 или 238.
Деление атомных ядер изотопа 235 происходит под воздействием тепловых (медленных) нейтронов, получить которые относительно просто. Однако в природном уране изотопа 235 почти в 140 раз меньше, чем изотопа 238. Но для деления атомных ядер изотопа 238 требуется воздействие быстрых нейтронов, обладающих более высокой энергией, чем медленные, и образование которых значительно сложнее. Тем не менее развитие АЭС идет по пути все большего применения реакторов, работающих на быстрых нейтронах.
Полученное в результате ядерной реакции тепло служит для преобразования подведенной к установке воды в пар, который затем используется для выработки электрической энергии аналогично тому, как это происходит на ТЭС.
Наибольшее количество электрической энергии в странах СНГ вырабатывается на ТЭС. Но запасы необходимого для их работы органического топлива (угля, нефти, газа) не безграничны, и, кроме того, такое топливо очень нужно и в других отраслях народного хозяйства. Для работы ГЭС не требуется органическое топливо, но реки есть далеко не везде и не всегда могут быть использованы для сооружения ГЭС значительной мощности. В качестве топлива для АЭС необходим редко встречающийся в природе уран; кроме того, велики расходы на обеспечение как безопасных условий работы, так и безопасности для окружающей среды. Поэтому ведутся работы по созданию установок для получения электроэнергии, основанных на новых принципах ее производства или работающих на практически неисчерпаемых первичных источниках энергии.
Осваивается магнитогидроэлектрический способ производства электроэнергии, при котором она вырабатывается МГД-генераторами. В каждом таком генераторе имеется мощная магнитная система и канал, по которому с большой скоростью движется проводящая среда – плазма, состоящая из газов, разогретых до очень высокой температуры. В результате взаимодействия плазмы с магнитным полем создается разность потенциалов между электродами, расположенными вдоль канала генератора. Постоянный ток в подключенной к электродам внешней цепи затем преобразуется в переменный с помощью инверторной установки. Совместно с МГД-генераторами электрическая энергия вырабатывается и обычными паровыми турбогенераторами, в которых вторично используется тепло, выделяемое плазмой.
Ведутся работы по созданию тепловых электрических станций, на которых не требуется сжигать органическое топливо. К таким ТЭС относят гелиоэлектрические, преобразующие в тепловую (а затем электрическую) лучистую энергию солнца, и геотермальные, использующие тепловую энергию горячих источников. Разрабатываются также приливные электростанции, на которых напор воды создается за счет ее разных уровней во время морских приливов и отливов. Для этого строят специальное водохранилище, отгораживаемое от моря плотиной, расположенной в устье впадающей в море реки или перекрывающей в узком месте залив. Существуют также ветроэлектрические станции, использующие для вращения вала электрического генератора кинетическую энергию ветровых потоков.
Питание электрической железной дороги от системы внешнего электроснабжения. Чтобы увеличить надежность и экономичность электроснабжения всех потребителей, в том числе и электрической железной дороги, электростанции соединяют друг с другом электрическими и тепловыми сетями. Таким образом, создаются отдельные энергетические системы, которые в свою очередь связывают межсистемными ЛЭП. В результате образуются объединенные энергетические системы (ОЭС).
Все это позволяет регулировать распределение электрической энергии с учетом интенсивности ее выработки и потребления в отдельных энергетических системах, передавая нагрузки с более загруженных систем на менее нагруженные, повысить степень использования установленного на электростанциях оборудования.
В странах СНГ производство, передача и распределение электрической энергии осуществляются в основном на трехфазном переменном токе частотой 50 Гц. Различают электроустановки и сети напряжением до 1000 В и более 1000 В. ЛЭП, подводящие электрическую энергию к тяговым подстанциям электрических железных дорог, имеют номинальные напряжения 110 или 220 кВ, реже 35 кВ, иногда 10 или 6 кВ.
Номинальным называют напряжение, при котором электрооборудование может работать нормально в течение всего заданного срока службы. Здесь и далее указываются номинальные значения напряжений.
Для обеспечения большей надежности внешнего электроснабжения применяют две цепи ЛЭП, каждую из которых крепят на самостоятельных опорах. Межсистемные ЛЭП обычно выполняют двухцепными и подвешивают на отдельных опорах. ЛЭП, по которым питаются тяговые подстанции электрических железных дорог, бывают и двухцепные (их располагают на общих опорах), и одноцепные.
Электрические железные дороги относятся к потребителям категории I, нарушение электроснабжения которых связано с опасностью для жизни людей, существенным ущербом народному хозяйству, нарушением технологического процесса (графика движения поездов) и т. д. Такие потребители должны получать электрическую энергию от двух независимых источников и перерыв их электроснабжения может быть допущен только на время автоматического переключения питания с одного источника на другой. Однако вследствие большой протяженности электрических железных дорог питание каждой тяговой подстанции от двух независимых источников было бы связано с весьма значительными капитальными затратами. Поэтому допускается электроснабжение тяговых подстанций от одного источника по двум одноцепным ЛЭП, расположенным на отдельных опорах, или по идущим вдоль железной дороги двухцепным и одноцепным ЛЭП, имеющим двустороннее питание. При выходе из строя одной районной подстанции или ЛЭП протяженностью 150–200 км допускается перерыв электроснабжения не более чем для одной тяговой подстанции.
Подключение тяговых подстанций. Для поддержания необходимого уровня напряжения на тяговых подстанциях и снижения потерь энергии в питающей сети сооружают опорные тяговые подстанции, к которым присоединяют не менее трех ЛЭП напряжением 110 или 220 кВ. Такие подстанции располагают через каждые 150–200 км при питании по ЛЭП 110 кВ и через 250– 300 км при ЛЭП 220 кВ. Тяговые подстанции, расположенные между опорными, являются промежуточными. Между двумя соседними опорными подстанциями включают не более трех промежуточных при ЛЭП 110 кВ и электрификации железной дороги по системе переменного тока и не более пяти при системе постоянного тока. При ЛЭП 220 кВ число промежуточных тяговых подстанций между двумя смежными опорными может достигать пяти независимо от системы тока, по которой электрифицирована дорога.
Фидерная и подстанционная зоны. Различают фидерные и под-станционные зоны питания. Часть тяговой сети, получающая электрическую энергию по одной питающей линии (ее называют еще фидером) при одностороннем питании (рисунок 2.83, а) или по двум от соседних тяговых подстанций при двустороннем питании (рисунок 2.83, б), называют фидерной зоной, а в последнем случае – иногда межподстанционной. Две фидерные зоны, питаемые от одной и той же тяговой подстанции, образуют подстанционную зону.
Протяженность фидерных и подстанционных зон определяется расстоянием между тяговыми подстанциями, а оно зависит от многих факторов – системы тока и напряжения, по которой электрифицирована дорога, размеров и организации движения поездов, схемы питания электроподвижного
|
состава и др. Чем реже расположены тяговые подстанции, тем при прочих равных условиях больше потери энергии в тяговой сети и ниже напряжение на токоприемниках ЭПС. Чтобы это напряжение не оказалось меньше допускаемого минимального, на дорогах постоянного тока расстояние между тяговыми подстанциями составляет в среднем 15–20 км (в отдельных случаях 7–10 км), а суммарная площадь сечения проводов контактной сети равна 440–560 мм2 на путь (в отдельных случаях до 700 мм2 на путь). Поскольку невозможно применять в контактной подвеске провода такой большой площади сечения, параллельно им подвешивают дополнительные провода, называемые усиливающими. При системе переменного тока напряжением 25 кВ расстояния между тяговыми подстанциями увеличиваются до 40–50 км, площадь сечения проводов контактной сети составляет 120–160 мм2 на путь. Система 2х25 кВ позволяет увеличить расстояние между тяговыми подстанциями до 70–90 км при площади сечения проводов контактной сети около 260 мм2 на путь. На дорогах переменного тока в необходимых случаях также используют усиливающие провода.
Электроснабжение нетяговых потребителей.К ним относятся многие стационные и линейные нетяговые потребители – электроустановки (кроме тяговых), принадлежащие всем службам дороги, освещение станций, переездов и других объектов, а также механизмы и инструменты, для работы которых на линии необходима электроэнергия. Очень ответственным нетяговым потребителем является аппаратура автоблокировки. Кроме того, электрической энергией снабжаются различные районные потребители – промышленные предприятия, колхозы, совхозы и т. д., расположенные по обе стороны от железной дороги.
Питание нетяговых потребителей производится непосредственно от тяговых подстанций и по специальным воздушным линиям, обычно подвешенным на опорах контактной сети. Напряжение, при котором осуществляется передача электроэнергии, определяется наличием шин того или иного напряжения на подстанции. Чаще всего это 10 или 25 кВ, но в отдельных случаях может быть 6 и 35 кВ. Вдоль дороги, электрифицированной на постоянном токе, для питания нетяговых потребителей монтируют трехфазную воздушную линию напряжением обычно 10 кВ. На участках переменного тока нетяговые потребители подключаются к линии ДПР (два провода – рельсы) напряжением 25 кВ. При этом на опорах контактной сети подвешивают провода двух фаз, а в качестве третьей фазы используют ходовые рельсы. На опорах располагают провод фазы, напряжение которой подано в контактную сеть, и фазы, не используемой на данном участке для питания ЭПС. На двухпутных участках провода ДПР иногда располагают по одному на каждом пути, что облегчает подключение однофазных потребителей, расположенных с разных сторон дороги.
Для передачи электрической энергии нетяговым потребителям, работающим при напряжении 380 или 220 В, сооружают распределительные пункты, закрытые трансформаторные подстанции и комплектные трансформаторные подстанции. Распределительные пункты и закрытые трансформаторные подстанции (они находятся в специальных зданиях) располагают, как правило, на крупных железнодорожных станциях и в узлах, на промышленных предприятиях транспорта, в городах, поселках и т. д. Комплектные трансформаторные подстанции широко используют для электроснабжения линейных нетяговых потребителей. Их поставляют в собранном виде с трехфазными (КТП) или однофазными (КТПО) трансформаторами и устанавливают на специальный фундамент. Применяют также комплектные подстанции подъемно-опускного типа с однофазными трансформаторами (КТППО), которые крепят на опорах контактной сети.
На дорогах переменного тока однофазные трансформаторы комплект-
ных подстанций подключают к одному из проводов линии ДПР и к рельсам.
Трехфазные трансформаторы таких подстанций присоединяют к обоим проводам линии ДПР и рельсам. На дорогах постоянного тока рельсы не используют; однофазные трансформаторы подключают к двум проводам трехфазной линии электроснабжения нетяговых потребителей, а трехфазные – к трем проводам этой линии.
Особенности питания аппаратуры автоблокировки. Для устройств автоблокировки, принадлежащих к потребителям категории I, требуется обеспечить основное и резервное питание. Если имеется специальная воздушная линия для устройств СЦБ (ВЛ СЦБ), подвешенная на самостоятельных опорах, основное питание осуществляется от нее, а резервное – от линий электроснабжения нетяговых потребителей (ВЛ 6 или 10 кВ при постоянном токе и линий ДПР при переменном токе); их располагают на опорах контактной сети. При отсутствии ВЛ СЦБ основное питание на участках переменного тока подают от специального провода, находящегося под напряжением 25 кВ (провод СЦБ); его подвешивают на опорах контактной сети. В качестве второго провода используют рельсы. Резервное питание и в этом случае подается от линии ДПР. Основной и резервный трансформаторы могут быть установлены раздельно или совместно в специальной комплектной подстанции.