Глава 5. Массовые опросы в социологии
Таблица 4.1
Сокращенная таблица t-распределения
Стьюдента (W. Gosset, 1908)
Число степеней свободы | Р = 0,05 | Р = 0,01 |
t = 12,706 | t = 63,657 | |
t = 4,303 | t = 9,925 | |
t = 2,571 | t = 4,032 | |
t = 2,306 | t = 3,355 | |
t = 2,228 | t = 3,169 | |
t = 2,145 | t = 2,977 | |
t = 2,120 | t = 2,921 | |
t = 2,086 | t = 2,845 | |
t = 2,042 | t = 2,750 | |
t = 2,000 | t = 2,660 | |
t = 1,980 | t = 2,617 | |
¥ | t = 1,960 | t = 2,576 |
Рассмотрим пример вычисления t для описанного выше эксперимента, в котором изучалось воздействие антивоенного фильма на изменение установок студентов. Пусть для контрольной и экспериментальной групп при итоговом тестировании по шкале пацифистских установок были получены следующие результаты:
Контрольная группа | Экспериментальная группа |
nk = 28 чел. | Nэ = 34 чел. |
Sk = 5,6 | Sэ= 3,4 |
Наша статистическая задача заключается в том, чтобы определить, отличаются ли средние двух групп настолько, чтобы можно было отвергнуть нулевую гипотезу о том, что эти средние взяты из одной генеральной совокупности. Воспользуемся приведенной выше формулой для вычисления значения t[1]:
Число степеней свободы в приведенном примере: (28 ¾ 1) + (34 ¾ 1) = 60.
Полученное значение t = 3,4760 заведомо превосходит табличные значения и для p < 0,05, и для р < 0,01 (на 5%-м уровне значение t для 60 степеней свободы составит 2,00, а на 1%-м — 2,660). Следовательно, мы можем отклонить нулевую гипотезу и сделать вывод, что существует статистически значимая разница между средними уровнями пацифизма в группе студентов, посмотревших антивоенный фильм, и в контрольной группе.
Важно, однако, всегда помнить о том, что статистическая значимость результатов совершенно отлична от их содержательной значимости! Даже высокая статистическая значимость результатов эксперимента не гарантирует, что эти результаты будут иметь сколько-нибудь интересную интерпретацию и повлияют на состояние современного социологического знания. Содержательная значимость зависит прежде всего от нашей способности увязать экспериментальную гипотезу с существующими социологическими теориями.
Многомерные и факторные эксперименты:
Общий обзор
В описанных выше экспериментах с контрольной группой каждый раз используются лишь два типа условий — «есть воздействие» либо «нет воздействия». Эти два типа условий по сути можно рассматривать как два уровня независимой переменной, которым можно присвоить условные числовые значения — например, «1» и «0». Иными словами, с точки зрения уровня измерения независимая переменная является номинальной, качественной. В контрольной группе ее значение равно нулю, в экспериментальной — единице. Однако исследователь часто располагает значительно большей информацией о независимой переменной и способен измерить и проконтролировать ее по крайней мере на трех-четырех уровнях значений. Соответственно экспериментальная гипотеза может быть сформулирована в терминах более или менее интенсивного воздействия либо наличия-отсутствия «отклика» зависимой переменной при конкретных уровнях независимой переменной.
В психологии хорошо известен закон «оптимума мотивации», так называемый закон Йеркса-Додсона.
В начале нашего века Р. Йеркс изучал, как влияет негативное подкрепление в форме удара электрическим током на выработку элементарных навыков у животных. В частности, в опытах с «танцующими мышами» (разновидность домашней мыши, имеющая генетический дефект, который заставляет ее двигаться по кругу или по восьмерке) он использовал три уровня силы тока — «сильный» (500 усл. ед.), «средний» (300 усл. ед.) и «слабый» (125 усл. ед.). Мышь должна была научиться выбирать один из двух туннелей. В конце туннеля ее в любом случае ожидало «вознаграждение» — мышь противоположного пола. При ошибочном выборе (белый туннель) мышь испытывала удар током, при правильном выборе (черный туннель) негативное подкрепление отсутствовало. Местоположение туннелей (слева-справа) менялось случайным образом от пробы к пробе. Выяснилось, что быстрее всего обучение происходит при «средней» величине стимуляции. Обнаруженный в этом эксперименте нелинейный характер связи между величиной стимула к решению определенной задачи и успешностью решения был затем неоднократно подтвержден и во многих других экспериментах, в том числе с испытуемыми-людьми и с позитивной стимуляцией. Чрезмерная мотивация и чрезмерная величина подкрепления, как и слабая мотивация, всякий раз оказывали меньшее воздействие на успешность выполнения различных задач.
Эксперименты, в которых используется несколько (более двух) уровней независимой переменной, называются многоуровневыми. Схема вышеописанного эксперимента с рандомизацией и тремя уровнями независимой переменной (Х1Х2, Х3) такова:
R | X1 | O1 | ||||
R | X2 | O2 | ||||
R | X3 | O3 | ||||
Экспериментальная гипотеза в этом случае формулируется как гипотеза об отношениях значений О1, О2 и О3(в рассмотренном примере О1 < О2и O2 > O3). Независимая переменная в многомерном эксперименте может иметь и более трех уровней. Иначе говоря, она может быть «нормальной» количественной переменной, измеренной на интервальном или абсолютном уровне. Соответственно гипотеза многомерного эксперимента может формулироваться в более точных терминах — как гипотеза об «относительно-абсолютных» или даже «абсолютно-абсолютных» отношениях переменных. Например, в эксперименте может изучаться влияние привлекательности лектора на частоту посещения занятий студентами, воздействие количества доступных источников информации о продукте на формирование потребительских предпочтений либо характер взаимосвязи между размером денежного вознаграждения испытуемых и успешностью решения ими однотипных задач. Таким образом, многомерные эксперименты позволяют проверять более тонкие и точные содержательные гипотезы о механизмах индивидуального и группового поведения.
Статистические гипотезы, проверяемые в многомерных экспериментах, — это гипотезы о различиях между значениями зависимой переменной для разных уровней независимой переменной. Нулевая гипотеза формулируется как гипотеза о том, что разброс индивидуальных значений внутри одного уровня независимой переменной (внутри соответствующей экспериментальной группы) идентичен разбросу индивидуальных значений между различными уровнями (группами), т. е. отношение дисперсии межгрупповых оценок к дисперсии внутригрупповых оценок равно 1. Последнее отношение обозначается как F-критерий. Для того чтобы определить, не превышает ли полученная в конкретном 8 эксперименте величина F пороговое значение статистического F-распределения для заданного уровня значимости, используют статистическую технику однофакторного дисперсионного анализа. Термин «однофакторный» в данном случае означает, что в эксперименте использовалась лишь одна независимая переменная (фактор воздействия). Рассмотрение техники дисперсионного анализа и статистического оценивания получаемой в результате величины F выходит за пределы данного обзора (детальные описания и рекомендации при необходимости можно найти в книгах из списка дополнительной литературы к главе).
В тех областях социологии и социальной психологии, которые имеют сравнительно развитую традицию экспериментальных исследований (межличностное и межгрупповое восприятие, исследования динамики установок, социальные процессы в малых группах, оценивание эффективности образовательных программ и т. д.) часто используют более сложные схемы экспериментирования, объединяемые термином «факторные эксперименты».
Факторный экспериментальный план включает в себя две и более, независимые переменные (именуемые также «факторами»), каждая из которых имеет несколько уровней воздействия. Так как при увеличении числа независимых переменных очень быстро возрастает число групп, в каждой из которых применяется одна из возможных комбинаций этих переменных и их уровней[2](в полном факторном плане число групп равно произведению числа уровней, задаваемых для каждой независимой переменной), в целях экономии ресурсов и рационального распределения исследовательских усилий были разработаны многочисленные планы, где каждый из «уровней» переменных реализуется один раз, а обобщение и статистический анализ взаимодействия различных факторов и их изолированного и совместного влияния на зависимую переменную проводится на групповом уровне[3].
Всякий факторный эксперимент — это, в сущности, несколько экспериментов, объединенных в одном плане. Обобщенные данные факторного эксперимента позволяют ответить на два типа вопросов: 1) имеется ли эффект воздействия для каждой отдельно взятой независимой переменной; 2)зависит ли величина этого эффекта воздействия от величины значений других независимых переменных? Изолированный эффект воздействия одной независимой переменной называют главным эффектом, а изменение величины этого эффекта под влиянием другой независимой переменной называют взаимодействием.
В таблице 4.2 представлен план простейшего факторного эксперимента «два на два» («2 X 2»), в котором изучалось влияние новизны и типа изображения на интерес, проявляемый к этому изображению 4-месячными младенцами. В качестве индикатора интереса использовалась длительность разглядывания. Каждая из независимых переменных была представлена только двумя уровнями: для новизны — новое или старое, предъявлявшееся в предыдущих сериях изображение; для типа изображения — геометрический контур либо схематическое изображение человеческого лица (схематические рисунки использовались для уравнивания изображений по визуальной сложности, так как время фиксации взора обычно зависит от сложности и количества деталей). Как видно из приведенных в таблице 4.2 данных, налицо оба главных эффекта. Влияние новизны на интерес становится очевидным при сравнении средних по строкам — средняя длительность разглядывания изображений (и геометрических, и «физиономий») заметно выше в случае предъявления новых рисунков (55 сек против 20). Сравнение по столбцам показывает, что при усреднении данных по двум группам (новые и старые рисунки) изображения человеческого лица вызывают значительно больший интерес, проявляющийся в более длительном разглядывании (45 сек). Налицо также взаимодействие между типом изображения и новизной. Результаты предъявления разных типов изображений различны для «старой» и «новой» группы. Различаются и значения разностей по столбцам для каждой строки (60 -50 = 10 сравнительно с 30 -10 = 20), и соответствующие показатели по строкам (60 -30 = 30 сравнительно с 50 -10 = 40). Иными словами, большая привлекательность человеческих лиц сильнее проявляется при предъявлении старых рисунков (различие в 10 сек при предъявлении новых картинок увеличивается до 20 для старых изображений), а различие между предъявлением старых и новых рисунков при использовании геометрических контуров возрастало до 40 сек.
Таблица 4.2
Факторный эксперимент 2x2
Новизна изображения | Тип изображения | Средняя длительность разглядывания, сек. | |
Лицо | Геометрическое | ||
Новое Старое | |||
Средняя длительность, cек. |
При обработке результатов многофакторных экспериментов основной статистической моделью является многофакторный дисперсионный анализ.
Многофакторные эксперименты в социологии — это очень часто полевые эксперименты, моделирующие сложные взаимосвязи реального мира. Преимущество полевых многофакторных экспериментов — в их «жизнеподобии», т. е. внешней, лицевой валидности. Но здесь же кроется и главный недостаток таких экспериментов — более низкие надежность и внутренняя валидность. Критики полевых многофакторных экспериментов часто отмечают, что приближение эксперимента к реальному миру здесь нередко достигается за счет замены экспериментального контроля чисто статистическим. В последнем случае возрастают угрозы валидности, связанные с неправильной спецификацией модели измерения, с «закоррелированностью» отдельных уровней независимых переменных с неконтролируемыми внешними переменными (см. гл. 5, 6). Кроме того, в многофакторных экспериментах острее, чем в индивидуальных и межгрупповых, стоит проблема агрегирования данных — практически всегда существует вероятность того, что отношения, выявленные при анализе сводных групповых данных, в точности не соблюдаются ни для одного отдельно взятого испытуемого (так же, как среднее некоторой выборки может не относиться ни к одному конкретному выборочному наблюдению), К неоспоримым достоинствам факторных экспериментов следует отнести значительно большие возможности статистического анализа, в том числе анализа различных эффектов взаимодействия переменных-«факторов».
В социальных науках часто употребляют также понятие квазиэксперимента, или квазиэкспериментального исследовательского плана. Речь идет о панельных, трендовых и т. п. планах выборочных обследований (гл. 5). Выборочные обследования, особенно продолжающиеся или проводимые как сравнительные «срезовые» исследования для подвыборок, испытавших либо не испытавших определенное, локализованное во времени воздействие (например, социальную революцию, реформу образования или крах фондового рынка), действительно позволяют делать выводы о взаимоотношениях между интересующими исследователя независимыми и зависимыми переменными, а значит — проверять гипотезы о предполагаемых причинно-следственных связях, однако экспериментальную рандомизацию и контроль в выборочных исследованиях, как показано в соответствующих главах, здесь заменяет использование случайных выборок и специальных методов статистического анализа данных.
Дополнительная литература
Вознесенский В. А. Статистические методы планирования эксперимента в технико-экономических исследованиях. 2-е изд., перераб. и доп. М.: Финансы и статистика, 1981. Гл. 2, 3.
Гласc Дж., Стэнли Дж. Статистические методы в педагогике и психологии: Пер. с англ. / Общ. ред. Ю. П. Адлера. М.: Прогресс, 1976. Гл. 15—19.
Готтсданкер Р. Основы психологического эксперимента: Пер. с англ. М.: Изд-во МГУ, 1982.
Дружинин Н. К. Выборочное наблюдение и эксперимент. М.: Статистика, 1977.
Кэмпбелл Д. Модели экспериментов в социальной психологии и прикладных исследованиях: Пер. с англ. / Сост. и общ. ред. М. И. Бобневой. М.: Прогресс, 1980.
Ядов В. А. Социологическое исследование: методология, программа, методы. М.: Наука, 1987.
Определение и истоки
Метод опроса — самый распространенный из социологических методов, определяющий «образ» социологии в глазах непосвященных и к тому же имеющий самую богатую и давнюю историю. Утверждение о том, что почти невозможно дать строгое и исчерпывающее определение того, что такое опрос, на первый взгляд кажется нелепостью. Однако в действительности представления о том, каким должен быть хороший социологический опрос, менялись так часто, что любая попытка свести определение опроса к конкретной технике сбора информации, плану исследования, типу анализа данных или характеру использования полученных сведений наверняка столкнется с трудностями. Трудности эти так существенны, что один известнейший специалист в этой области в монографии, посвященной анализу истории и перспектив опросного метода, предложил говорить о некотором «базовом типе» опроса, по отношению к которому можно было бы упорядочить все многообразие реальных опросных исследований[4]. Идеальной моделью он предложил считать «модель Гэллапа», т. е. тот тип опроса общественного мнения, который сложился в 1930—1940-х гг. в результате сотрудничества (и конкуренции) между основанным Дж. Гэллапом в 1935 году Американским институтом общественного мнения и другими исследовательскими фирмами. Для типичного «гэллаповского» опроса характерны следующие признаки:
1) общенациональный характер;
2) отбор из генеральной совокупности всех лиц, достигших избирательного возраста;
3) максимальная приближенность времени проведения опроса ко времени выборов или референдумов;
4) среднее число респондентов в выборке — 2000 человек;
5) случайный или квотный характер выборки;
6) использование стандартных вопросников и личное интервьюирование каждого респондента по месту жительства;
7) «закрытый» характер вопросов;
8) сбор индивидуальных, неагрегированных данных (каждое наблюдение может быть соотнесено с конкретным индивидуумом в выборке)[5].
Широко распространенные отклонения от описанной «гэллаповской» нормы все же столь существенны, что нам следует рассмотреть и другие подходы к определению сути опросного метода. Во-первых, следует вспомнить о том, что для социологии как науки главной функцией опроса является все же не предсказание результатов завтрашних выборов, а проверка гипотез о характере связей между различными переменными. (Переменная-признак задается как one-рационализация неких содержательных представлений о существенном для социологической теории качестве, свойстве: «социально-экономическом статусе», «отчуждении», «расовой сегрегации» и т. п.) Во-вторых, использование выборочного обследования, как говорится в главах 7 и 8, как раз и имеет основной целью либо оценку значения определенного параметра в совокупности, либо — в большинстве случаев — проверку статистической гипотезы о связи между переменными. Эксперимент — это идеальная модель исследовательского плана для анализа причинных связей. Выборочное обследование (опрос) — хорошее приближение к идеальной модели. Для идеального эксперимента, напомним, характерны:
1) контроль условий, т. е. возможность варьирования независимых переменных и измерения зависимых;
2) использование экспериментальной и контрольной групп для проведения повторных сравнений;
3) рандомизация, т. е. случайный отбор испытуемых в контрольную и экспериментальную группы.
В выборочном исследовании, строго говоря, отсутствует возможность контроля, так как исследователь лишен возможности манипулировать независимыми переменными, произвольно задавать их значение. Однако с помощью количественных методов измерения и статистического анализа связи между переменными выборочный опрос может максимально приблизиться к той модели причинного вывода, которая лежит в основе экспериментального метода.
В целом анализ связи между переменными — и экспериментальный, и сугубо статистический, основанный на опросных данных, — подразумевает перекрестную группировку данных по двум переменным (независимой и зависимой), обнаружение связи между ними и введение третьей, контрольной переменной для оценки ее влияния на изучаемую связь. (Кстати, те возможности для контроля влияния «посторонних» факторов на исследуемую взаимосвязь, которые возникают при анализе связи в выборочных обследованиях, обычно даже превосходят возможности эксперимента.) В последнем случае набор контрольных переменных, «изолируемых» с помощью эксперимента, обычно ограничен. В выборочном обследовании список переменных чаще всего значительно обширнее и к тому же включает в себя такие переменные, которые в принципе не могут использоваться в эксперименте из практических или этических соображений: нельзя, например, произвольно назначить испытуемому экспериментальное условие «родился чернокожим» или «часто подвергался жестокому обращению» Однако заметим сразу, что последнее обстоятельство все чаще используется не столько для восхваления, сколько для критики — во многих отношениях справедливой — применимости выборочных опросов для анализа причинных связей (о чем еще будет сказано ниже).
Случайный отбор, используемый на том или ином этапе как основа построения выборки для массового опроса, может рассматриваться как подобие рандомизации в эксперименте. В идеальном случае, почти не встречающемся на практике, любая единица генеральной совокупности имеет равные шансы попасть в выборку. Поэтому влияние внешних, «посторонних» факторов нейтрализуется, и систематическое смещение отсутствует. В реальности, как показано в обсуждении выборочного метода, мы редко можем реализовать простую вероятностную выборку, довольствуясь каким-то приемлемым и экономичным компромиссом между случайным отбором, стратификацией и квотированием.
Контрольная и экспериментальная группы, используемые в экспериментальных планах для сравнения и выявления эффекта некоего причинного фактора, «отбираются» в выборочных обследованиях на стадии анализа, апостериорно. Фактически они «конструируются» исследователем ad hoc в ходе сравнения подвыборок, выделенных с помощью фиксации разных уровней одной (или нескольких) объяснительных переменных.
В целом опросные методы обладают рядом существенных достоинств:
1) позволяют достаточно быстро получить большой массив наблюдений, причем каждый индивидуальный «случай» (отдельное наблюдение) описывается с помощью целого набора теоретически релевантных переменных признаков;
2) стоимость выборочного опроса оказывается сравнительно небольшой, если принять во внимание объем получаемой информации;
3) использование стандартных опросных процедур и однородных количественных показателей при соблюдении определенных условий позволяет не только проверять гипотезы о причинных зависимостях, но и проводить вторичный и сравнительный анализ результатов.
Недостатки, также присущие этому методу, мы проанализируем в следующих разделах.
Выбор исследовательского плана
Даже в том случае, когда исследователь четко осознал, в чем заключаются содержательные вопросы, на которые он хочет получить ответ в ходе выборочного обследования; ему не стоит торопиться составлять анкету и нанимать интервьюеров. Прежде ему нужно поразмыслить над тем, какого рода логику анализа данных он собирается использовать, после того как эмпирические данные будут получены. Для того, чтобы сведения о людях, группах или сообществах (об их поведении, установках или других чертах) можно было рассматривать в качестве доказательства каких-то теоретических гипотез, следует сначала решить, что именно можно считать доказательством в данном случае, по каким правилам будут строиться логические сопоставления и статистические выводы, иными словами, необходимо выбрать принципиальный исследовательский план.
В главе 4 довольно подробно говорится о том, как различия в логике и целях анализа влияют на выбор плана эксперимента. В планировании выборочного опроса исследователи исходят приблизительно из тех же соображений: сравнение «случаев», подгрупп, сравнение типа «до — после». Здесь мы рассмотрим лишь самые общие типы исследовательских планов, используемых в выборочных опросах (другие проблемы планирования детально анализируются в главе 7, посвященной построению выборки).
Первый шаг в планировании опроса — это принятие решения о том, что считать единицей анализа. В простейшем случае мы стремимся приписать каждому индивиду (респонденту) определенное значение по каждой переменной. Предположим, наша цель заключается в том, чтобы на основании опроса 2000 респондентов узнать, как распределены в генеральной совокупности «партийная принадлежность», «судимость» и некоторые другие переменные, а кроме того, мы собираемся проанализировать связь этих переменных с полом, возрастом и семейным статусом. Некоторые из переменных будут строго количественными, другие будут описываться как качественные признаки. В любом случае нам нужно будет охарактеризовать каждого респондента по каждой переменной. В результате мы сможем построить структурированную матрицу данных, подобную той, что изображена в табл. 5.1. В столбцах этой матрицы содержится вся информация о респондентах, которые здесь и являются единицами анализа (или «случаями»). Именно их свойства нам предстоит оценивать, сравнивать в поисках взаимосвязей и т. п.
Таблица 5.1
Пример матрицы данных типа
«респонденты х переменные»
«Случай» | 1-й респондент | 2-й респондент | …… | 2000-й респондент |
Переменная | ||||
Пол | мужской | женский | ……. | мужской |
Возраст | 38 лет | 23 года | ……. | 62 года |
Семейный статус | разведен | замужем | ……. | вдовец |
Судимость | отсутствует | отсутствует | ……. | 2 судимости |
Партийная | конституционный | беспартийная | ……. | христианский |
принадлежность | демократ | социалист |
Обычно единицами анализа, т. е. теми, кого исследуют, бывают именно люди. Однако единицами анализа могут быть и семьи, и организации, и регионы, и государства. Например, в матрице данных столбцы могли бы соответствовать городам, а строки — переменным типа «уровень преступности», «население», «число безработных» и т. п. Некоторые из переменных были бы получены путем агрегирования, «объединения», индивидуальных данных (например, о наличии дополнительных источников дохода), другие характеризовали бы город как целое (наличие аэропортов, доля прямых налоговых поступлений в бюджете). В любом случае исследователю нужно заранее представить себе, как будет выглядеть матрица данных и какие приемы анализа он собирается к ней применить. Любое конкретное исследование может предполагать и использование различных единиц анализа, т.е. полученная в нем эмпирическая информация может характеризовать и отдельных индивидов, и семьи, и — в результате использования агрегированных показателей — регионы или государства. Важно лишь, чтобы все единицы анализа, которые вы намерены использовать, были определены заранее. В ином случае в матрице данных «единица анализа х переменная» неизбежно возникнут пропуски или дублирование одной и той же информации. Так как количество матриц данных равно количеству предполагаемых единиц анализа (хотяразмерность их будет разной[6]), можно заранее создать соответствующее количество отдельных массивов данных (файлов), содержащих те данные, которые относятся к данной единице анализа. Скажем, сведения о возрасте попадут в массив «респонденты», а сведения о составе семьи — в массив «семьи» (даже если последние и были получены в результате беседы с одним из членов семьи).
Описанная выше двумерная матрица данных типична для одномоментного, «срезового» исследования, характеризующего ситуацию в момент опроса. Целью такого исследования может быть, во-первых, описание распределения каких-то переменных в совокупности. Например, мы можем узнать, сколько человек собирается проголосовать за демократов при условии, что выборы будут проведены тотчас же (типичный «гэллаповский» опрос). Во-вторых, мы можем попытаться использовать «срезовые» данные для характеристики отдельных подвыборок — например, «работающих пенсионеров», «высококвалифицированных рабочих в возрасте от 30 до 45 лет» и т. п. Далее, применяя различные методы статистического анализа, можно проверить какие-то гипотезы о взаимосвязи переменных (в данный момент времени). В последнем случае исследование становится объяснительным. Однако даже в чисто описательном исследовании мы столкнемся с необходимостью каких-то сравнений, делающих полученные нами оценки осмысленными. Если, например, мы узнаем, что 15% подростков читают медицинские журналы не реже 1 раза в месяц, то для того, чтобы понять много это или мало, нам нужно будет с чем-то сопоставить этот показатель. Скажем, мы можем сравнить подростков 1994 года с подростками 1954 года. (Конечно, нам предварительно придется найти данные соответствующего опроса 40-летней давности.)
Изменениям во времени подвержены не только отдельные показатели, но и взаимоотношения между переменными. Так, глобальные социально-экономические изменения — экономический кризис, сдвиг в социально-классовой структуре — могут привести к тому, что высокая зависимость дохода от продолжительности образования станет незначимой. Следовательно, изучение сложного причинного механизма воздействия образовательного уровня на доходы требует какой-то серии разделенных во времени обследований, позволяющих проследить динамику интересующего нас отношения под влиянием существенных внешних переменных.
Исследовательские планы, позволяющие анализировать данные во временной перспективе, называют лонгитюдными. Данные получают многократно, в разные моменты времени, причем цели исследования могут быть сугубо дескриптивными (доля голосующих за коммунистов, распределение положительных и отрицательных установок по отношению к «мыльным операм») и объяснительными.
Принято выделять основные виды лонгитюдных планов, каждый из которых имеет множество модификаций и «переходных» форм. Это трендовые, когортные и панельные исследования.
Трендовые обследования ближе всего к уже описанным однократным, «срезовым», опросам. Некоторое авторы даже предлагают обозначать их просто как регулярные опросы, т. е. опросы, проводимые через более или менее равные промежутки времени[7]. В трендовом опросе одна и та же генеральная совокупность изучается в разные моменты времени, причем каждый раз выборка строится заново. Иными словами, анализируются последовательные выборки из одной и той же совокупности. Например, опрос Института Гэллапа, проводимый ежемесячно в ходе избирательной компании, является трендовым обследованием, показывающим динамику установок населения по отношению к кандидатам или партиям. Строго говоря, если количество тех, кто собирается голосовать за кандидата X, за месяц увеличилось на 16%, мы можем лишь зафиксировать изменение картины предпочтений избирателей, но не можем наверняка утверждать, что определенная группа избирателей изменила свои предпочтения, так как в двух последовательных опросах мы имеем дело с разными респондентами. Преимуществом оперативных трендовых исследований является возможность «привязки» наблюдаемых изменений к текущим событиям — политическим скандалам, решениям правительственных органов, изменениям в финансово-экономической ситуации, — что облегчает их интерпретацию.
Однако, например, ежегодные исследования занятости и безработицы, проводимые по этому плану, могут привести к трудно интерпретируемым результатам. Если в результате двух таких исследований окажется, что социально-демографические характеристики людей, получающих пособие, почти не изменились, будет большой неосторожностью утверждать, что существует какая-то «типичная» группа людей, постоянно живущая на средства налогоплательщиков. Вполне вероятно, что большинство респондентов, охваченных первым опросом, уже нашли работу.
В качестве особого исследовательского плана иногда рассматривают когортные обследования. Основания для выделения этого плана несколько условны и связаны скорее с теоретической логикой интерпретации (а не сбора) данных. Если в трендовых исследованиях отбор каждый раз производится из общей совокупности — всех избирателей, всех семей и т.п., — то, исследуя «когорты» (от лат. cohors (cohortis) — подразделение, видовая группа), мы каждый раз производим отбор из одной специфической совокупности, стремясь проследить перемены в ее поведении, установках и т. п. Пусть, например, мы изучали ценностные ориентации десятиклассников в 1985 году, а в 1995 году нам захотелось снова опросить бывших десятиклассников, так как мы предполагаем, что их ценностные ориентации изменились с переходом в иную стадию жизненного цикла (создание собственной семьи, формирование профессиональной идентичности и т. п.). В этом случае мы будем работать с новой выборкой из прежней специфической совокупности, сравнивая представителей одной и той же «когорты» с десятилетним интервалом, а не десятиклассников 1985 года с десятиклассниками 1995 года (в последнем случае можно было бы говорить о трендовом исследовании десятиклассников).
Самым совершенным воплощением идеи введения временной перспективы в исследовательский план является панельное обследование. Если вернуться к нашей структурированной матрице данных (см. табл. 5.1), то можно сказать, что панель — это прибавление к двумерной матрице еще одного измерения, превращающего ее в пределе в некий «параллелепипед» данных. Панельные исследования позволяют не только зафиксировать какие-то социальные изменения в установках, поведении и т. п., но и выявить причины и последствия этих изменений на микроуровне, т. е. на уровне отдельных индивидов. Если трендовое исследование показывает, что десятая часть потребителей, предпочитавших отечественные макароны, «переметнулась» к поклонникам спагетти, мы не можем точно определить, кто из респондентов изменил свои предпочтения и, следовательно, каковы общие характеристики «перебежчиков». Таким образом, мы лишены возможности проверить, какие объяснительные переменные позволяют предсказывать динамику предпочтений на микроуровне.
Время, t
Рис. 2.Элементарный план панельного исследования
(два замера — две матрицы данных)
Панельное исследование — это многократное обследование одной и той же выборки из генеральной совокупности в разные моменты времени. Эту многократно используемую выборку и называют панелью. Исследовательский план, использующий панель респондентов, — весьма дорогостоящее предприятие, требующее к тому же очень тщательной проработки всех деталей до начала опроса. В трендовом и когортном исследовании данные нередко сравниваются с данными других опросов, проводившихся ранее иными исследовательскими группами. Этот путь проще и дешевле, однако сравнимость результатов обследований, планировавшихся разными исследовательскими командами и — чаще всего — для разных целей, всегда проблематична. Возможность оценки «чистого эффекта» и величины наблюдаемых изменений — большое преимущество панельного плана. Однако эта возможность прямо зависит от величины усилий, предпринятых социологами для сохранения неизменности самой панели и инструментов сбора данных. Если, например, в первой волне пан