Установки для электронно-лучевой сварки.
Электронно-лучевая сварка
Сущность процесса состоит в использовании кинетической энергии потока электронов, движущихся с высокими скоростями в вакууме. Для уменьшения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а также для химической и тепловой защиты катода в электронной пушке создают вакуум порядка 10-4... 10-6 мм рт. ст.
Техника сварки
При сварке электронным лучом проплавление имеет форму конуса (рисунок 1). Плавление металла происходит на передней стенке кратера, а расплавляемый металл перемещается по боковым стенкам к задней стенке, где он и кристаллизуется.
1 - электронный луч; 2 - передняя стенка кратера;
3 - зона кристаллизации; 4 - путь движения жидкого металла
Рисунок 1. Схема переноса жидкого металла при электронно-лучевой сварке
Проплавление при электронно-лучевой сварке обусловлено в основном давлением потока электронов, характером выделения теплоты в объеме твердого металла и реактивным давлением испаряющегося металла, вторичных и тепловых электронов и излучением. Возможна сварка непрерывным электронным лучом. Однако при сварке легкоиспаряющихся металлов (алюминия, магния и др.) эффективность электронного потока и количество выделяющейся в изделии теплоты уменьшаются вследствие потери энергии на ионизацию паров металлов. В этом случае целесообразно сварку вести импульсным электронным лучом с большой плотностью энергии и частотой импульсов 100 ... 500 Гц. В результате повышается глубина проплавления. При правильной установке соотношения времени паузы и импульса можно сваривать очень тонкие листы. Благодаря теплоотводу во время пауз уменьшается протяженность зоны термического влияния. Однако при этом возможно образование подрезов, которые могут быть устранены сваркой колеблющимся или расфокусированным лучом.
Основные параметры режима электронно-лучевой сварки (таблица 1):
- сила тока в луче;
- ускоряющее напряжение;
- скорость перемещения луча по поверхности изделия;
- продолжительность импульсов и пауз;
- точность фокусировки луча;
- степень вакуумизации.
Ускоряющее напряжение в основном определяет тепловую энергию в пятне нагрева, оказывает исключительно большое влияние на глубину проплавления сварочной ванны. При сохранении постоянной удельной мощности в пятне нагрева глубина проплавления увеличивается с повышением ускоряющего напряжения. В первом приближении глубина проплавления пропорциональна квадратному корню из ускоряющего напряжения.
На практике электронно-лучевую сварку выполняют при ускоряющем напряжении 10—100 кВ. В процессе сварки необходима высокая стабильность ускоряющего напряжения.
Колебание напряжения (±0,1 %) приводит к существенному изменению диаметра пятна нагрева и отклонению электронного луча относительно свариваемого стыка.
Сила тока электронного луча оказывает большое влияние на ширину сварочной ванны и шва. Увеличение силы тока приводи: к их существенному возрастанию. Глубина проплавления сварочной ванны мало зависит от силы тока. Однако общее увеличение мощности электронного луча приводит к некоторому ее возрастанию.
Для увеличения глубины проплавления при сравнительно небольших ускоряющих напряжениях может быть использован способ формирования шва на подъем. Особенно большой эффект достигается при сварке вертикальных швов. В этом случае сила тока электронного луча значительно увеличивается и достигает 1 А и выше. На практике силу тока электронного луча выбирают от десятков миллиампер до 1 А и более.
Скорость сварки влияет на размеры сварочной ванны и шва, э как и при дуговой сварке. Увеличение скорости сварки при сохранении постоянства погонной энергии несколько увеличивает глубину проплавления, мало влияя на ширину шва.
На размер сварочной ванны и шва оказывают влияние и дополнительные параметры режима: сила тока в магнитной фокусирующей линзе, остаточное давление в камере; время импульса и паузы при импульсной сварке, колебания электронного луча; расстояние от пушки до свариваемого изделия и др.
Особенно большое влияние на размеры сварочной ванны и шва оказывает сила тока в магнитной фокусирующей линзе (фокусировка). Этот параметр режима определяет конфигурацию потока электронов по отношению к свариваемому изделию (рис. 5.2), форму ванны и диаметр пятна нагрева. Регулированием тока в магнитной линзе можно в широких пределах изменять концентрацию
тепловой энергии в пятне нагрева. Это значит, что при одинаковом значении погонной энергии можно получать различную по форме очную ванну и шов (рис. 5.3). При увеличении силы тока Iф окусирующей линзе ширина ванны е сначала снижается, а м возрастает.
Остаточное давление в камере определяет стабильность процесса и качество сварных соединений. Разрежение должно быть достаточным для исключения дугового разряда в течение всего нриода сварки. Увеличение давления в камере снижает мощность электронного луча и уменьшает его проникающую способность. Для сохранения постоянного вакуума производительность откачных насосов рассчитывают с учетом повышения давления в камере в процессе сварки. При электронно-лучевой сварке давление в камере поддерживается на уровне 10-2 - 10-4 Па.
Колебания электронного луча позволяют избежать ряда дефектов, свойственных электронно-лучевой сварке (подрезов, несплавлений кромок в корне шва и др.). Используют прямоугольные Млн синусоидальные поперечные колебания луча в широком диапазоне частот (10—800 Гц). Амплитуду колебаний выбирают в пределах 0,5-2 мм. Большие значения амплитуды приводят к раздвоению электронного луча относительно стыка и формированию раздельных ванн. Наряду с поперечным применяют и продольное колебание луча.
Расстояние от электронной пушки до свариваемого изделия (допускается в широких пределах: 50-120 мм для низковольтных Пушек и 50—500 мм для высоковольтных. Изменение расстояния п процессе сварки на несколько миллиметров не оказывает заметного влияния на размеры швов и их качество.
Для перемещения луча по поверхности изделия используют перемещение изделия или самого луча с помощью отклоняющей системы. Отклоняющая система позволяет осуществлять колебания луча вдоль и поперек шва или по более сложной траектории. Низковольтные установки используют при сварке металла толщиной свыше 0,5 мм для получения швов с отношением глубины к ширине до 8:1. Высоковольтные установки применяют при сварке более толстого металла с отношением глубины к ширине шва до 25:1.
Сварка электронным лучом имеет значительные преимущества:
- Высокая концентрация ввода теплоты в изделие, которая выделяется не только на поверхности изделия, но и на некоторой глубине в объеме основного металла. Фокусировкой электронного луча можно получить пятно нагрева диаметром 0,0002 ... 5 мм, что позволяет за один проход сваривать металлы толщиной от десятых долей миллиметра до 200 мм. В результате можно получить швы, в которых соотношение глубины провара к ширине до 20:1 и более. Появляется возможность сварки тугоплавких металлов (вольфрама, тантала и др.), керамики и т.д. Уменьшение протяженности зоны термического влияния снижает вероятность рекристаллизации основного металла в этой зоне.
- Малое количество вводимой теплоты. Как правило, для получения равной глубины проплавления при электронно-лучевой сварке требуется вводить теплоты в 4 ... 5 раз меньше, чем при дуговой. В результате рез ко снижаются коробления изделия.
- Отсутствие насыщения расплавленного и нагретого металла газами. Наоборот, в целом ряде случаев наблюдается дегазация металла шва и повышение его пластических свойств. В результате достигается высокое качество сварных соединений на химически активных металлах и сплавах, таких как ниобий, цирконий, титан, молибден и др. Хорошее качество электронно-лучевой сварки достигается также на низкоуглеродистых, коррозионно-стойких сталях, меди и медных, никелевых, алюминиевых сплавах.
Недостатки электронно-лучевой сварки:
- Возможность образования несплавлений и полостей в корне шва на металлах с большой теплопроводностью и швах с большим отношением глубины к ширине;
- Для создания вакуума в рабочей камере после загрузки изделий требуется длительное время.
Электронно-лучевая сварка осуществляется в большинстве к случаев без подачи присадочного материала. Выпуклость шва, как правило, отсутствует. Следовательно, разделка кромок нежелательна.
Установки для электронно-лучевой сварки.
Для создания электронного луча требуется довольно глубокий вакуум, такой, чтобы средняя длина свободного пробега электронов была больше расстояния от катода, где они образуются, до свариваемого изделия.
Установки для ЭЛС состоят из следующих основных узлов: вакуумной камеры с откачной системой, сва-рочной электронной пушки, создающей электронный луч, сварочного стола и системы перемещения деталей, источника силового питания электронной пушки, системы управления установкой. В зависимости от размеров свариваемого изделия в электроннолучевых установках используют камеры соответствующих размеров, позволяющих перемещать изделие для получения сварных швов заданной конфигурации.
Часто в камере размещают сварочные манипуляторы на несколько изделий, позволяющие осуществлять их смену, не открывая камеры, это значительно увеличивает производительность установок. Так как поперечные размеры источника сварочной теплоты - электронного луча в этих установках малы, к точности работы манипуляторов предъявляются повышенные требования. Так, отклонение свариваемого стыка от необходимого положения допускается от нескольких микрометров до 0,2 мм; отклонение скорости сварки не должно превышать ±1% от номинала.
Электронный луч - источник теплоты, разогревающий и расплавляющий металл, создается электронной пушкой, питающейся от силового выпрямителя, блока нагрева катода, а управление энергетическими параметрами луча - от блока управления модулятором (регулируется сила тока в луче), блока фокусировки (регулируется поперечное сечение луча) и блока отклонения луча (определяется местонахождение луча на детали и перемещение луча по ней).
Скорость перемещения луча по детали при сварке - скорость сварки определяется скоростью перемещения или вращения самой детали или скоростью отклонения луча. Механизмы сварочного манипулятора питаются от блока питания системы перемещения детали. Система питания вакуумных насосов и система измерения степени вакуума в различных частях установки также выделены в отдельный блок общей схеме электропитания.
Работа всех отдельных блоков общей электросхемы согласуется с помощью блока коммутации и управления.
Рисунок. Схема электронно-лучевой сварки
Плазменная сварка
Плазменная сварка – это сварка с помощью направленного потока плазменной дуги. Имеет много общего с технологией аргонной сварки.
Общепринятые обозначения
PAW – Plasma Arc Welding – сварка плазменной дугой