Этап. Решение математической модели задачи.
Тема 3.5. Теория принятия решений
1. Область применимости теории принятия решений. Принятие решений в условиях определенности, в условиях риска, в условиях неопределенности. Критерии принятия решений в условиях неопределенности. Дерево решений.
1. Этапы принятия решения.
Этап. Постановка (формулировка) задачи (проблемы).
На этом этапе аналитик должен трансформировать слова заказчика "хочу, чтобы было так" в четко сформулированную задачу.
В 99% случаях заказчик не только не может предоставить, но и понятия не имеет о тех данных, которые необходимы аналитику для успешного разрешения проблемы. Оно и понятно – ведь у него нет соответствующего образования. (На самом деле, такое образование заказчику и не нужно, ведь он обратился к грамотному специалисту-аналитику, выпускнику ЗГИА! -)
Все необходимое аналитик должен добыть себе сам. Так будет лучше по всем показателям – и по времени и, что немаловажно, по искажению информации (формулировка задачи с чьих-то слов уже априори чревато ошибками).
Аналитику необходимо увидеть и изучить проблему "изнутри", для этого ему нужно "внедриться" в сложившуюся ситуацию. Зачастую аналитику надо "внедриться" и поработать на всех ключевых постах в организации заказчика, столкнувшейся с проблемой. На это может уйти от нескольких дней до месяцев.
Этап. Построение математической модели задачи.
Здесь четко поставленная и сформулированная жизненная проблема формализуется математически.
1) Определяются переменные– переменные величины (их может быть как несколько, так и одна), изменение которых влияет на конечный результат задачи. Наборы различных конкретных значений переменных называются альтернативами(также во многих литературных источниках набор переменных называется планом).
2) Определяются ограничения, которые накладываются на переменные. Пересечение всех полученных ограничений задает допустимое множество. Набор переменных, которые удовлетворяют всем ограничениям, называется допустимым планом.
3) Определяется критерий, по которому должны отбираться альтернативные решения (планы). Такой критерий называется целевой функцией.
Задача состоит в том, чтобы найти такой набор переменных (выбрать такую альтернативу), чтобы они принадлежали допустимому множеству (т.е. удовлетворяли всем ограничениям задачи) и чтобы целевая функция от этих переменных принимала свое оптимальное значение. Такой набор переменных называется оптимальным планом.Понятно, что оптимальный план должен быть допустимым, поэтому и ищется оптимальный план только среди допустимых планов.
Описанными первыми двумя этапами занимается дисциплина "математическое моделирование ", являющаяся составной частью исследования операций.
этап. Решение математической модели задачи.
Решением математических моделей задач занимается дисциплина "математическое программирование ".
В исследовании операций нет единого общего метода решений всех математических моделей. Многолетние исследования позволили обобщить и сгруппировать схожие типы моделей в определенные классы задач. Методы решения данных классов задач составляют отдельные разделы математического программирования, со временем они даже трансформировались в отдельные дисциплины. Дадим краткий обзор некоторых из них.
1) Линейное программирование . В этом классе задач и целевая функция и все ограничения являются линейными функциями. К таким задачам относятся:
задача о плане производства; задача о диете; и др.
2) Целочисленное программирование. В этих задачах целевая функция и все ограничения также являются линейными. Все переменные должны принимать только целочисленные значения. К таким задачам относятся:
транспортная задача; задача о назначениях; и др.
3) Динамическое программирование . Применяется, когда исходную задачу можно разбить на меньшие подзадачи и решать их пошагово. К таким задачам относятся:
задача коммивояжера; задача об управлении запасами; задача о ранце; и др.
4) Нелинейное программирование. В этом классе задач либо целевая функция, либо все или некоторые ограничения являются нелинейными функциями.
Еще раз акцентируем внимание, что выше приведены лишь некоторые основные разделы математического программирования. Кроме указанных разделов еще существуют теория графов, теория расписаний, сетевое планирование, системы массового обслуживания, теория марковских процессов и др. Каждый раздел математического программирования – это отдельная сформировавшаяся дисциплина, требующая достаточно углубленного теоретического и, особенно, практического изучения.
Этап. Принятие решений.
На этой стадии аналитик (лицо, принимающее решение) на основе пройденных предыдущих этапов должен принять оптимальное решение. Это и является предметом науки "Теория принятия решений ".
"Теория принятия решений", кроме выше перечисленных разделов математики, основывается на таких науках: как теории вероятностей, математическое моделирование, математическое программирование, математическая статистика, вычислительная математика, математическая логика и т.д.. Без знаний указанных разделов математики, что является необходимым, но не достаточным условием, принятия правильного, оптимального решения в принципе не возможно. Невозможно ведь учиться в пятом классе, до этого не выучив во втором классе таблицы умножения! Интуиция это хорошо, до разумных пределов.
Принятие решения – это задача управленческого типа. Под ней понимается задача выбора лицом, принимающим решение наилучшегоспособа (исхода) из некоторого конечного множества допустимых вариантов (альтернатив). (ЛПР – лицо, принимающее решение)
После принятия решения изучаемая система переходит в новое состояние, на которое будет реагировать окружающая среда. Окружающей средой может быть военная, экономическая, финансовая, техническая или какая-либо другая обстановка.
Возможны следующие ситуации (варианты, случаи, задачи):
1) Принятия решения в условиях определенности ЛПР знает реакцию окружающей среды на выбор им той или иной альтернативы, т.е. он знает насколько "полезной" или "вредной" для его системы будет реакция окружающей среды на выбор им той или иной альтернативы.
В условиях определенности математическое программирование дает точное решение поставленной задачи. Поэтому необходимости выбирать из нескольких вариантов, попросту нет. Таким образом, в условиях определенности "Теория принятия решений" не используется, такими задачами занимается математическое программирование.
2) Принятия решения в условиях риска. ЛПР знает вероятность реакции окружающей среды на выбор им той или иной альтернативы.
3) Принятия решения в условиях неопределенности. ЛПР ничего не знает о реакции окружающей среды на выбор им той или иной альтернативы.
При этом предполагается, что в перечисленных случаях окружающая среда реагирует на принятое ЛПР решение беспристрастно (как природа), не преследуя никаких своих целей.
4) Принятия решения в условиях противодействия. Однако зачастую бывают ситуации, когда в качестве окружающей среды может выступать, например, конкурирующая фирма, военный противник, конкурент на выборах и т.п. В этом случае такая окружающая среда будет реагировать уже совсем не беспристрастно, а сугубо в своих интересах.