Форма представления информации

Билет № 1. Понятие информации и информ.процессов.Свойства информации.

Слово “информация” происходит от латинского слова informatio, что в переводе означает сведение, разъяснение, ознакомление.

Понятие “информация” в курсе информатики является базовым (основным), его нельзя дать через другие, более простые понятия. В геометрии, например, базовыми являются понятия: “точка”, “луч”, “плоскость”. Содержание базовых понятий в любой науке поясняется на примерах или выявляется путем сопоставления с содержанием других понятий.

Информация – это сведения об окружающем мире, которые повышают уровень осведомленности человека.

Свойства информации.

1. Понятность (на понятном языке, понятными терминами)

2. Полезность (информация должна иметь практическую ценность)

3. Достоверность (информация должна быть правдивой)

4. Актуальность (своевременность)

5. Полнота (информация полна, если ее достаточно для принятия решений)

6. Точность (определяется степенью близости к реальному состоянию объекта, процесса, явления)

Понятие информационного процесса.

Действия, выполняемые с информацией, называются информационными процессами. Выделяют следующие информационные процессы:

1. Процесс передачи информации, который включает в себя:

· ввод (сбор, получение) информации;

· вывод информации;

· передачу информации.

2. Процесс обработки (преобразования) информации

3. Процесс хранения информации (в собственной памяти, или на внешних носителях)

Примеры информационных процессов помещены в Таблице 1.

Таблица 1. Примеры информационных процессов.

Название информац. процесса   Примеры информационных процессов
Передача информации Сбор информации об объекте с помощью органов чувств: зрения – по цвету клубники (красная, зеленая) можно определить, спелая ягода или нет; по фотографии человека можно определить, относится ли человек к числу ваших знакомых, или нет слуха – зазвонил телефон, раздался звонок в дверь, засвистел кипящий чайник вкуса – достаточно ли соленый салат обоняния – аромат маминых духов осязания – горячий ли чай в чашке, мягкое ли одеяло Вывод информации Устный рассказ о проведенном отпуске, запись классного руководителя в дневнике о пропущенном занятии Передача информации – двусторонний процесс, всегда есть источник информации (отправляет информацию) и приемник (получает информацию). Разговор, переписка, с помощью технических средств связи (телефон, радио, телевидение – каналы передачи информации)
Обработка информации решение математической задачи поиск номера телефона в справочнике размышление над ответом на поставленный вопрос
Хранение информации в памяти человека - свое имя, домашний адрес, дату рождения в записной книжке – телефоны друзей, рецепты блюд в журнале – выкройки и описание моделей одежды в энциклопедиях – сведения об объектах, событиях, известных личностях

В рамках науки информация является первичным и неопределяемым понятием. Оно предполагает наличие материального носителя информации, источника информации, передатчика информации, приемника и канала связи между источником и приемником. Понятие информации используется во всех сферах: науке, технике, культуре, социологии и повседневной жизни. Конкретное толкование элементов, связанных с понятием информации, зависит от метода конкретной науки, цели исследования или просто от наших представлений.

По способу передачи и восприятия различают следующие виды информации: визуальную — передаваемую видимыми образами и символами, аудиальную — звуками, тактильную — ощущениями, органолептическую — запахами и вкусом, машинную — выдаваемую и воспринимаемую средствами вычислительной техники, и т. д.

С понятием информации связаны такие понятия, как сигнал, сообщение и данные.

Сигнал (от латинского signum — знак) представляет собой любой процесс, несущий информацию.

Сообщение — это информация, представленная в определенной форме и предназначенная для передачи.

Данные — это информация, представленная в формализованном виде и предназначенная для обработки ее техническими средствами, например, ЭВМ.

Форма представления информации

Компьютер, помогающий человеку хранить и обрабатывать информацию, приспособлен в первую очередь для обработки текстовой, числовой, графической информации.

Рассмотрим только те виды информации, которые «понимают» технические устройства (в частности, компьютер).

  • Текстовая информация, например текст в учебнике, сочинение в тетради, реплика актера в спектакле, прогноз погоды, переданный по радио. Заметим, что в устном общении (личная беседа, разговор по телефону, радиопостановка спектакля) информация может быть представлена только в словесной, текстовой форме.
  • Числовая информация, например таблица умножения, арифметический пример, в хоккейном матче счет, время прибытия поезда и др. В чистом виде числовая информация встречается редко, разве что на контрольных по математике. Чаще всего используется комбинированная форма представления информации.

Рассмотрим пример. Вы получили телеграмму: «Встречайте двенадцатого. Поезд прибывает в восемь вечера». В данном тексте слова «двенадцатого» и «восемь» мы понимаем как числа, хотя они и выражены словами.

  • Графическая информация: рисунки, схемы, чертежи, фотографии. Такая форма представления информации наиболее доступна, так как сразу передает необходимый образ (модель), а словесная и числовая требуют мысленного воссоздания образа. В то же время графическая форма представления не даёт исчерпывающих разъяснений о передаваемой информации. Поэтому наиболее эффективно сочетание текста, числа и графики.

Например, при решении задач по геометрии мы используем чертеж (графика + пояснительный текст (текст) + числовые расчеты (числа).

  • Музыкальная (звуковая) информация.

В настоящее время мультимедийная (многосредовая, комбинированная) форма представления информации в вычислительной техники становится основной. Цветная графика сочетается в этих системах со звуком и текстом, с движущимися видеоизображением и трехмерными образами.

Билет №2.

ЕДИНИЦЫ КОЛИЧЕСТВА ИНФОРМАЦИИ:
ВЕРОЯТНОСТНЫЙ И ОБЪЕМНЫЙ ПОДХОДЫ

Определить понятие «количество информации» довольно сложно. В решении этой проблемы существуют два основных подхода. Исторически они возникли почти одновременно. В конце 40-х годов XX века один из основоположников кибернетики американский математик Клод Шеннон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к «объемному» подходу.

Вероятностный подход

Рассмотрим в качестве примера опыт, связанный с бросанием правильной игральной .кости, имеющей N граней (наиболее распространенным является случай шестигранной кости: N = 6). Результаты данного опыта могут быть следующие: выпадение грани с одним из следующих знаков: 1,2,... N.

Введем в рассмотрение численную величину, измеряющую неопределенность -энтропию (обозначим ее Н). Величины N и Н связаны между собой некоторой функциональной зависимостью:

H = f (N), (1.1)

а сама функция f является возрастающей, неотрицательной и определенной (в рассматриваемом нами примере) для N = 1, 2,... 6.

Рассмотрим процедуру бросания кости более подробно:

1) готовимся бросить кость; исход опыта неизвестен, т.е. имеется некоторая неопределенность; обозначим ее H1;

2) кость брошена; информация об исходе данного опыта получена; обозначим количество этой информации через I;

3) обозначим неопределенность данного опыта после его осуществления через H2. За количество информации, которое получено в ходе осуществления опыта, примем разность неопределенностей «до» и «после» опыта:

I = H1 - H2 (1.2)

Очевидно, что в случае, когда получен конкретный результат, имевшаяся неопределенность снята (Н2 = 0), и, таким образом, количество полученной информации совпадает с первоначальной энтропией. Иначе говоря, неопределенность, заключенная в опыте, совпадает с информацией об исходе этого опыта. Заметим, что значение Н2 могло быть и не равным нулю, например, в случае, когда в ходе опыта следующей выпала грань со значением, большим «З».

Следующим важным моментом является определение вида функции f в формуле (1.1). Если варьировать число граней N и число бросаний кости (обозначим эту величину через М), общее число исходов (векторов длины М, состоящих из знаков 1,2,.... N) будет равно N в степени М:

X=NM. (1.3)

Так, в случае двух бросаний кости с шестью гранями имеем: Х = 62 = 36. Фактически каждый исход Х есть некоторая пара (X1, X2), где X1 и X2 - соответственно исходы первого и второго бросаний (общее число таких пар - X).

Ситуацию с бросанием М раз кости можно рассматривать как некую сложную систему, состоящуюиз независимых друг от друга подсистем - «однократных бросаний кости». Энтропия такой системы в М раз больше, чем энтропия одной системы (так называемый «принцип аддитивности энтропии»):

f(6M) = M ∙ f(6)

Данную формулу можно распространить и на случай любого N:

F(NM) = M ∙ f(N) (1.4)

Прологарифмируем левую и правую части формулы (1.3): ln X = M ∙ ln N, М =ln X/1n M. Подставляем полученное для M значение в формулу (1.4):

Форма представления информации - student2.ru

Обозначив через К положительную константу , получим: f(X) = К ∙ lп Х, или, с учетом (1.1), H=K ∙ ln N. Обычно принимают К = 1 / ln 2. Таким образом

H = log2 N. (1.5)

Это - формула Хартли.

Важным при введение какой-либо величины является вопрос о том, что принимать за единицу ее измерения. Очевидно, Н будет равно единице при N = 2. Иначе говоря, в качестве единицы принимается количество информации, связанное с проведением опыта, состоящего в получении одного из двух равновероятных исходов (примером такого опыта может служить бросание монеты при котором возможны два исхода: «орел», «решка»). Такая единица количества информации называется «бит».

Все N исходов рассмотренного выше опыта являются равновероятными и поэтому можно считать, что на «долю» каждого исхода приходится одна N-я часть общей неопределенности опыта: (log2 N)1N. При этом вероятность i-го исхода Рi равняется, очевидно, 1/N.

Таким образом,

Форма представления информации - student2.ru

Та же формула (1.6) принимается за меру энтропии в случае, когда вероятности различных исходов опытанеравновероятны (т.е. Рi могут быть различны). Формула (1.6) называетсяформулой Шеннона.

В качестве примера определим количество информации, связанное с появлением каждого символа в сообщениях, записанных на русском языке. Будем считать, что русский алфавит состоит из 33 букв и знака «пробел» для разделения слов. По формуле (1.5)

Н = log2 34 ≈ 5 бит.

Однако, в словах русского языка (равно как и в словах других языков) различные буквы встречаются неодинаково часто. Ниже приведена табл. 1.3 вероятностей частоты употребления различных знаков русского алфавита, полученная на основе анализа очень больших по объему текстов.

Воспользуемся для подсчета Н формулой (1.6); Н ≈ 4,72 бит. Полученное значение Н, как и можно было предположить, меньше вычисленного ранее. Величина Н, вычисляемая по формуле (1.5), является максимальным количеством информации, которое могло бы приходиться на один знак.

Таблица 1.3. Частотность букв русского языка

i Символ Р(i) i Символ P(i) i Символ Р(i)
Пробел 0,175   0,028 Г 0.012
0,090 М 0,026 Ч 0,012
Е 0,072 Д 0,025 И 0,010
Ё 0,072 П 0,023 X 0,009
А 0,062 У 0,021 Ж 0,007
И 0,062 Я 0,018 Ю 0,006
Т 0,053 Ы 0,016 Ш 0.006
Н 0,053 З 0.016 Ц 0,004
С 0,045 Ь 0,014 Щ 0,003
Р 0,040 Ъ 0,014 Э 0,003
В 0,038 Б 0,014 Ф 0,002
Л 0,035            

Аналогичные подсчеты Н можно провести и для других языков, например, использующих латинский алфавит - английского, немецкого, французского и др. (26 различных букв и «пробел»). По формуле (1.5) получим

H = log2 27 ≈ 4,76 бит.

Как и в случае русского языка, частота появления тех или иных знаков не одинакова.

Если расположить все буквы данных языков в порядке убывания вероятностей, то получим следующие последовательности:

АНГЛИЙСКИЙ ЯЗЫК: «пробел», E, T, A, O, N, R, …

НЕМЕЦКИЙ ЯЗЫК: «пробел», Е, N, I, S, Т, R, …

ФРАНЦУЗСКИЙ ЯЗЫК: «пробел», Е, S, А, N, I, Т, …

Рассмотрим алфавит, состоящий из двух знаков 0 и 1. Если считать, что со знаками 0 и 1 в двоичном алфавите связаны одинаковые вероятности их появления (Р(0) = Р(1) = 0,5), то количество информации на один знак при двоичном кодировании будет равно

H = 1оg2 2 = 1 бит.

Таким образом, количество информации (в битах), заключенное в двоичном слове, равно числу двоичных знаков в нем.

Объемный подход

В двоичной системе счисления знаки 0 и 1 будем называть битами (от английского выражения Binary digiTs - двоичные цифры). Отметим, что создатели компьютеров отдают предпочтение именно двоичной системе счисления потому, что в техническом устройстве наиболее просто реализовать два противоположных физических состояния: некоторый физический элемент, имеющий два различных состояния: намагниченность в двух противоположных направлениях; прибор, пропускающий или нет электрический ток; конденсатор, заряженный или незаряженный и т.п. В компьютере бит является наименьшей возможной единицей информации. Объем информации, записанной двоичными знаками в памяти компьютера или на внешнем носителе информации подсчитывается просто по количеству требуемых для такой записи двоичных символов. При этом, в частности, невозможно нецелое число битов (в отличие от вероятностного подхода).

Для удобства использования введены и более крупные, чем бит, единицы количества информации. Так, двоичное слово из восьми знаков содержит один, байт информации, 1024 байта образуют килобайт (кбайт), 1024 килобайта - мегабайт (Мбайт), а 1024 мегабайта - гигабайт (Гбайт).

Между вероятностным и объемным количеством информации соотношение неоднозначное. Далеко не всякий текст, записанный двоичными символами, допускает измерение объема информации в кибернетическом смысле, но заведомо допускает его в объемном. Далее, если некоторое сообщение допускает измеримость количества информации в обоих смыслах, то они не обязательно совпадают, при этом кибернетическое количество информации не может быть больше объемного.

В дальнейшем тексте данного учебника практически всегда количество информации понимается в объемном смысле.

Наши рекомендации