Пример 1 - сопоставление выборок по качественно определяемому признаку

В данном варианте использования критерия мы сравниваем про­цент испытуемых в одной выборке, характеризующихся каким-либо ка­чеством, с процентом испытуемых в другой выборке, характеризующих­ся тем же качеством.

Допустим, нас интересует, различаются ли две группы студентов по успешности решения новой экспериментальной задачи. В первой группе из 20 человек с нею справились 12 человек, а во второй выбор­ке из 25 человек - 10. В первом случае процентная доля решивших за­дачу составит 12/20·100%=60%, а во второй 10/25·100%=40%. Дос­товерно ли различаются эти процентные доли при данных n1 и n2?

Казалось бы, и "на глаз" можно определить, что 60% значи­тельно выше 40%. Однако на самом деле эти различия при данных n1, n2 недостоверны.

Проверим это. Поскольку нас интересует факт решения задачи, будем считать "эффектом" успех в решении экспериментальной задачи, а отсутствием эффекта - неудачу в ее решении.

Сформулируем гипотезы.

H0: Доля лиц, справившихся с задачей, в первой группе не больше, чем во второй группе.

H1: Доля лиц, справившихся с задачей, в первой группе больше, чем во второй группе.

Теперь построим так называемую четырехклеточную, или четы­рехпольную таблицу, которая фактически представляет собой таблицу эмпирических частот по двум значениям признака: "есть эффект" - "нет эффекта".

Таблица 5.1

Четырехклеточная таблица для расчета критерия при сопоставлении двух групп испытуемых по процентной доле решивших задачу.

Группы "Есть эффект": задача решена "Нет эффекта": задача не решена Суммы
    Количество испытуемых % доля   Количество испытуемых % доля      
1 группа (60%) А (40%) Б
2jЈynna (40%) В (60%) Г
Суммы        

В четырехклеточной таблице, как правило, сверху размечаются столбцы "Есть эффект" и "Нет эффекта", а слева - строки "1 группа" и "2 группа". Участвуют в сопоставлениях, собственно, только поля (ячейки) А и В, то есть процентные доли по столбцу "Есть эффект".

По Табл. XII Приложения 1 определяем величины φ, соответст­вующие процентным долям в каждой из групп.

Пример 1 - сопоставление выборок по качественно определяемому признаку - student2.ru

Теперь подсчитаем эмпирическое значение φ* по формуле:

Пример 1 - сопоставление выборок по качественно определяемому признаку - student2.ru

где φ1 - угол, соответствующий большей % доле;

φ2 - угол, соответствующий меньшей % доле;

n1 - количество наблюдений в выборке 1;

n2 - количество наблюдений в выборке 2.

В данном случае:

Пример 1 - сопоставление выборок по качественно определяемому признаку - student2.ru

По Табл. XIII Приложения 1 определяем, какому уровню значи­мости соответствует φ*эмп=1,34:

р=0,09

Можно установить и критические значения φ*, соответствующие принятым в психологии уровням статистической значимости:

Пример 1 - сопоставление выборок по качественно определяемому признаку - student2.ru

Построим "ось значимости".

Пример 1 - сопоставление выборок по качественно определяемому признаку - student2.ru

Полученное эмпирическое значение φ* находится в зоне незна­чимости.

Ответ: H0 принимается. Доля лиц, справившихся с задачей, впервой группе не больше, чем во второй группе.

Можно лишь посочувствовать исследователю, который считает существенными различия в 20% и даже в 10%, не проверив их досто­верность с помощью критерия φ*. В данном случае, например, досто­верными были бы только различия не менее чем в 24,3%.

Похоже, что при сопоставлении двух выборок по какому-либо качественному признаку критерий φ может нас скорее огорчить, чем обрадовать. То, что казалось существенным, со статистической точки зрения может таковым не оказаться.

Гораздо больше возможностей порадовать исследователя появля­ется у критерия Фишера тогда, когда мы сопоставляем две выборки по количественно измеренным признакам и можем варьировать "эффект .

Наши рекомендации