Уровень статистической достоверности

Статистическая значимость или р-уровень значимости - основной результат проверки

статистической гипотезы. Говоря техническим языком, это вероятность получения данного

результата выборочного исследования при условии, что на самом деле для генеральной

совокупности верна нулевая статистическая гипотеза - то есть связи нет. Иначе говоря, это

вероятность того, что обнаруженная связь носит случайный характер, а не является свойством

совокупности. Именно статистическая значимость, р-уровень значимости является

количественной оценкой надежности связи: чем меньше эта вероятность, тем надежнее связь.

Предположим, при сравнении двух выборочных средних было получено значение уровня

статистической значимости р=0,05. Это значит, что проверка статистической гипотезы о

равенстве средних в генеральной совокупности показала, что если она верна, то вероятность

случайного появления обнаруженных различий составляет не более 5%. Иначе говоря, если бы

две выборки многократно извлекались из одной и той же генеральной совокупности, то в 1 из

20 случаев обнаруживалось бы такое же или большее различие между средними этих выборок.

То есть существует 5%-ная вероятность того, что обнаруженные различия носят случайный

характер, а не являются свойством совокупности.

В отношении научной гипотезы уровень статистической значимости – это количественный

показатель степени недоверия к выводу о наличии связи, вычисленный по результатам

выборочной, эмпирической проверки этой гипотезы. Чем меньше значение р-уровня, тем выше

статистическая значимость результата исследования, подтверждающего научную гипотезу.

Полезно знать, что влияет на уровень значимости. Уровень значимости при прочих равных

условиях выше (значение р-уровня меньше), если:

- величина связи (различия) больше;

- изменчивость признака (признаков) меньше;

- объем выборки (выборок) больше.

Односторонние еpи двусторонние критерии проверки значимости

Если цель исследования том, чтобы выявить различие параметров двух генеральных

совокупностей, которые соответствуют различным ее естественным условиям (условия жизни,

возраст испытуемых и т. п.), то часто неизвестно, какой из этих параметров будет больше, а

какой меньше.

Например, если интересуются вариативностью результатов в контрольной и

экспериментальной группах, то, как правило, нет уверенности в знаке различия дисперсий или

стандартных отклонений результатов, по которым оценивается вариативность. В этом случае

нулевая гипотеза состоит в том, что дисперсии равны между собой, а цель исследования —

доказать обратное, т.е. наличие различия между дисперсиями. При этом допускается, что

различие может быть любого знака. Такие гипотезы называются двусторонними.

Но иногда задача состоит в том, чтобы доказать увеличение или уменьшение параметра;

например, средний результат в экспериментальной группе выше, чем контрольной. При этом

уже не допускается, что различие может быть другого знака. Такие гипотезы называются

Односторонними.

Критерии значимости, служащие для проверки двусторонних гипотез, называются

Двусторонними, а для односторонних — односторонними.

Возникает вопрос о том, какой из критериев следует выбирать в том или ином случае. Ответ

На этот вопрос находится за пределами формальных статистических методов и полностью

Зависит от целей исследования. Ни в коем случае нельзя выбирать тот или иной критерий после

Проведения эксперимента на основе анализа экспериментальных данных, поскольку это может

Привести к неверным выводам. Если до проведения эксперимента допускается, что различие

Сравниваемых параметров может быть как положительным, так и отрицательным, то следует

Наши рекомендации