Критерии различия в уровне исследуемого признака

1. Q – критерий Розенбаума.

2. U – критерий Манна-Уитни.

3. Н – критерий Крускала - Уоллиса

4. S – критерий тенденций Джонкира

1. Q – критерий Розенбаума

Критерий используется для оценки различий между о. В каждой из выборок должно быть не менее 11 испытуемых (значений) двумя выборками по уровню какого-либо признака, измеренного количественно.

Непараметрический критерий, позволяющий оценить различие между двумя выборкам и по уровню какого-либо признака. (Невыявленность достоверных различий с помощью этого критерия, строго говоря, не означает их отсутствия, а указывает на необходимость применения более мощного критерия, например j* Фишера.) Если Q – критерий выявил достоверное различие с уровнем значимости p<= (меньше или равно) 0,01 – можно ограничиться только его применением.

Критерий применим в тех случаях, когда данные представлены, по крайней мере, в порядковой шкале. Признак должен варьировать в некотором диапазоне значений – в противном случае применение критерия невозможно. Например, если имеется только 3 значения признака – Х1, Х2, Х3 – установить различия очень трудно. Метод Розенбаума требует, соответственно, достаточно тонко измеренных признаков.

Применение критерия начинается с упорядочивания значений признака в обеих выборках по нарастанию (или убыванию). (Для удобства каждое значение можно представить на отдельной карточке с целью их последующей систематизации.) Далее становится видно, совпадают ли диапазоны значений. Если нет, то определяется, насколько один ряд «выше» - S1, а другой «ниже» - S2. Чтобы избежать путаницы, рекомендуется первым рядом считать тот, где значения выше, а вторым – тот, где ниже.

Гипотезы:

Но: Уровень признака в выборке 1 не превышает уровня признака в выборке 2.

Н1: Уровень признака в выборке 1 превышает уровень признака в выборке 2.

Ограничения критерия Q

В каждой из выборок должно быть не менее 11 наблюдений.

Объемы выборок должны примерно совпадать:

Меньше 50 наблюдений – разница не более 10;

От 50 до 100 наблюдений – не больше 20;

Больше ста наблюдений, то одна из выборок не должна быть больше другой более чем в 1,5 – 2 раза.

Диапазоны разброса значений в двух выборках не должны совпадать между собой, иначе применение критерия бессмысленно.

Алгоритм ранжирования.

1) Меньшему значению начисляется меньший ранг. Наименьшему значению начисляется ранг 1. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений. (Например, если n = 7, то наибольшее значение получит ранг 7.)

2) В случае если несколько значений равны, им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны. Не следует путать понятие ранга и понятия порядкового номера! При ранжировании мы выбираем в качестве следующего значения не следующее «по списку», а следующее по величине.)

3) Общая сумма рангов должна совпадать с расчетной, которая вычисляется по формуле:

S (Ri) = N(N+1) / 2

Где N – общее количество ранжируемых наблюдений (значений).

Несовпадение реальной и расчетной суммы рангов свидетельствует о допущенной ошибке при начислении рангов или при их суммировании!

2. U – критерий Манна-Уитни

Критерий предназначен для оценки различий между двумя
выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n1 и n2 больше или равны 3 (либо n1 = 2, а n2 тогда больше или равно 5.)

Метод определяет, достаточно ли мала зона пересекающихся значений между двумя рядами. Чем меньше эта область, тем более вероятно, что различия достоверны. Эмпирическое (фактически полученное) значение критерия U отражает то, насколько велика зона совпадения между рядами. Чем меньше Uэмп., тем более вероятно, что различия достоверны.

Гипотезы.

Но: Уровень признака в группе 2 не ниже уровня признака в группе 1.

Н1: Уровень признака в группе 2 ниже уровня признака в группе 1.

Ограничения критерия U.

1. В каждой выборке должно быть не менее 3 наблюдений или, в крайнем случае, допускается соотношение 2 к 5 или более.

2. В каждой выборке должно быть не более 60 наблюдений.

Алгоритм подсчета критерия U – Манна-Уитни.

1.Перенести все данные выборок на индивидуальные карточки (на которых цветом или как-то еще будет отражено, к какой из выборок принадлежит значение).

2. Разложить все карточки в общий ряд по мере нарастания признака, не считаясь с тем, к какой выборке они относятся.

3. Проранжировать (согласно алгоритму ранжирования) значения на карточках, приписывая меньшему значению меньший ранг. Всего рангов должно быть n1 + n2 (объем первой выборки + объем второй выборки).

4. Заново разложить карточки в два ряда, по признаку принадлежности к выборке 1 или выборке 2.

5. Подсчитать сумму рангов отдельно на карточках группы 1 и группы 2. Проверить совпадение общей суммы рангов с расчетной.

6. Определить большую из двух ранговых сумм.

7. Определить значение U по формуле:

8. Определить из таблиц критические значения U, в соответствии с этим, принять либо отклонить гипотезу Но.

3. Н – критерий Крускала - Уоллиса

Критерий Нприменяется для оценки различий по степени выраженности анализируемого признака одновременно между тремя, четырьмя и более выборками. Он позволяет выявить степень изменения признака в выборках, не указывая, однако, на направление этих изменений.

Критерий основан на том принципе, что чем меньше взаимопересечение выборок, тем выше уровень значимости Нэмп. Следует подчеркнуть, что в выборках может быть разное количество испытуемых, хотя в приведенных ниже задачах приводится равное число испытуемых в выборках.

Работа с данными начинается с того, что все выборки условно объединяются по порядку встречающихся величин в одну выборку и значениям этой объединенной выборки проставляются ранги. Затем полученные ранги проставляются исходным выборочным данным и по каждой выборке отдельно подсчитывается сумма рангов. Критерий построен на следующей идее – если различия между выборками незначимы, то и суммы рангов не будут существенно отличаться одна от другой и наоборот.

Величина Нэмп подсчитывается по формуле:

Нэмп Критерии различия в уровне исследуемого признака - student2.ru

Где N – общее число членов в обобщенной выборке;

ni – число членов в каждой отдельной выборке;

Критерии различия в уровне исследуемого признака - student2.ru – квадраты сумм рангов по каждой выборке.

При определении критических значений критерия применительно к четырем и более выборкам используют таблицу для критерия хи-квадрат, подсчитав предварительно число степеней свободы v для с = 4. Тогда v = с – 1 = 4 – 1=3..

Подчеркнем, что если использовать критерии, позволяющие сравнивать только два ряда значений, то полученный выше результат потребовал бы шести сравнений – первая выборка со второй, третьей и т.д.

Для использование критерия Н необходимо соблюдать следующие условия:

1. Измерение должно быть проведено в шкале порядка, интервалов или отношений.

2. Выборки должны быть незагисимыми.

3. Допускается разное число испытуемых в сопоставляемых выборках.

4. При сопоставлении трех выборок допускается, чтобы в одной из них было n = 3, а в двух других n = 2. Однако в таком случае различия могут быть зафиксированы лишь на 5 % уровне значимости.

5. Таблица 9 Приложения предусмотрена только для трех выборок и {n1n2, nЗ}, £ 5, то есть максимальное число испытуемых во всех трех выборках может быть меньше и равно 5.

6. При большем числе выборок и разном количестве испытуемых в каждой выборке следует пользоваться таблицей для критерия хи-квадрат. В этом случае число степеней свободы при этом определяется по формуле: v = с – 1, где с – количество сопоставляемых выборок.

4. S – критерий тенденций Джонкира

Этот критерий ориентирован на выявление тенденций изменения измеряемого признака при сопоставлении от трех и до шести выборок. В отличие от предыдущего критерия Я, количество элементов в каждой выборке должно быть одинаковым. Если же число элементов в каждой выборке различно, то необходимо случайным образом уравнять выборки, при этом неизбежно утрачивается часть информации. Если же потеря информации покажется слишком расточительной, то следует воспользоваться вышеприведенным критерием Н – Крускала–Уоллиса, хотя в этом случае нельзя будет выдвигать гипотезу о наличии или отсутствии искомых тенденций.

Критерий S основан на следующем принципе: все выборки располагаются слева направо в порядке возрастания значений исследуемого признака. При этом выборка, в которой среднее значение или сумма всех значений меньше, чем в остальных выборках, располагается слева, а выборка, в которой эти же значения выше, располагается правее и так далее.

После такого упорядочивания для каждого отдельного элемента, стоящего слева в выборке, подсчитывается число инверсий по отношению ко всем элементам упорядоченных выборок, расположенных правее. Инверсией для данного элемента выборки считается число элементов, которые превышают данный элемент по величине по всем выборкам справа. Инверсии по отношению к собственной выборке, т.е. той, в которой находится данный элемент, не подсчитываются. В соответствии с этим правилом у последнего столбца выборки инверсии также не подсчитываются, т.к. справа больше нет данных.

Правило подсчета инверсий позволяет утверждать, что чем выше величина инверсий у крайних правых столбцов, тем выше уровень значимости статистики S.

Следующий этап – подсчет общей суммы получившихся инверсий. Это число обозначается как А. В нашем примере оно равно
А = 30 + 18 + 10 = 58.

Величина S критерия вычисляется по формуле:

Критерии различия в уровне исследуемого признака - student2.ru

В формуле символ В также представляет собой выражение:

Критерии различия в уровне исследуемого признака - student2.ru

где n – количество элементов в столбце (группе)

с – количество столбцов (групп).

Для использования критерия S необходимо соблюдать следующие условия:

1. Измерение может быть проведено в шкале порядка, интервалов и отношений.

2. Выборки должны быть независимыми.

3. Количество элементов в каждой выборке должно быть одинаковым. Если это не так, то необходимо случайным образом уравнять выборки.

4. Нижняя граница применимости критерия: не менее трех выборок и не менее двух элементов в каждом наблюдении. Верхняя граница определяется таблицей 10 Приложения – не более 6 выборок и не более 10 элементов в каждой выборке. Во всех других случаях следует пользоваться критерием Н.

Библиография

1. Ермолаев, О.Ю. Математическая статистика для психологов /
О.Ю. Ермолаев. - М.: МПСИ: Флинта. - 2002. – 325 с.

2. Сидоренко, Е.В. Методы математической обработки в психологии. – СПб.: ООО «Речь» - 2004. – 350с.

3. Суходольский, Г. В. Математические методы в психологии /
Г.В. Суходольский. - Харьков: Изд-во Гуманитарный Центр. - 2006. – 512 с.

4. Тарасов, С.Г. Основы применения математических методов в психологии. / С.Г. Тарасов. - СПб.: Изд-во: Санкт - Петербург. ун-та. - 1999. – 326с.

5. Глинский, В. В., Ионин, В. Г. Статистический анализ данных /
В.В. Глинский, В.Г. Ионин. - М.: Филин. - 2008. – 265 с.

Лекция 14.

Наши рекомендации