Молекулярно-абсорбционная спектрометрия
В молекулярно-абсорбционной спектрометрии исследуют аналитические сигналы в области от 200 до 750 нм (УФ-излучение и видимый свет), вызванные электронными переходами внешних валентных электронов, а также поглощение излучения в ИК- и микроволновой области, связанное с изменением вращения и колебания молекул.
Наиболее широкое распространение получил метод, основанный на изучении поглощения в видимой области спектра в интервале длин волн от 400 до 750 нм – фотометрия; а также метод, основанный на поглощении излучения в различных частях инфракрасной области электромагнитного спектра – ИК-спектрометрия, чаще всего используют поглощение излучения в средней (длина волны 2,5 – 25 мкм) и ближней (длина волны 0,8-2,5 мкм) ИК-области.
Фотометрия
Фотометрический метод количественного анализа основан на способности определяемого вещества, компонента смеси или их окрашенных форм поглощать электромагнитное излучение оптического диапазона. Способность к поглощению зависит от цветности исследуемого вещества. Цветность определяется электронным строением молекулы, обычно ее связывают с наличием в молекуле так называемых хромофорных групп, обусловливающих поглощение электромагнитного излучения веществом в видимой и УФ-областях спектра.
Общая схема выполнения фотометрического определения едина и включает следующие стадии:
подготовку пробы и переведения определяемого вещества или компонента в раствор, в реакционноспособную, в зависимости от химизма аналитической реакции форму;
· получение окрашенной аналитической формы определяемого вещества в результате проведения цветной реакции при оптимальных условиях, обеспечивающих ее избирательность и чувствительность;
· измерение светопоглощающей способности аналитической формы, т.е. регистрация аналитического сигнала при определенных условиях, отвечающих его локализации и наибольшей интенсивности.
Промышленностью выпускаются различные приборы молекулярно-абсорбционной спектрометрии – колориметры, фотометры, фотоэлектроколориметры, спектрофотометры и т.д., в которых установлены различные комбинации источников света, монохроматизаторов и рецепторов. Приборы можно классифицировать следующим образом:
1. по способу монохроматизации лучистого потока – спектрофотометры, т.е. приборы с призменным или решеточным монохроматором, позволяющие достигать высокой степени монохроматизации рабочего излучения; фотоэлектроколориметры, т.е. приборы, в которых монохроматизация достигается с помощью светофильтров;
2. по способу измерения – однолучевые с прямой схемой измерения (прямопоказывающие) и двухлучевые с компенсационной схемой;
3. по способу регистрации измерений – регистрирующие и нерегиструющие.
В настоящее время применение автоматизированного, управляемого микропроцессором фотометра в большей степени расширяет возможности спектрофотометрии: позволяет проводить измерения большого количества образцов при различных длинах волн через различные интервалы времени.
Лекция № 7
Инфракрасная спектрометрия
Инфракрасная спектроскопия (ИК) представляет собой один из новейших физических методов количественного и качественного анализа пищевых продуктов. Этот метод позволяет получать достаточно полную информацию о строении и составе органических веществ. ИК-излучение применяется для исследования жирнокислого состава молочных продуктов, широко используется для определения пестицидов в различных пищевых продуктах, при анализе пищевых красителей, а также для контроля технологических процессов при переработке растительного и животного сырья.
К настоящему времени изучены и систематизированы инфракрасные спектры более чем 20 000 соединений, что существенно облегчает практическое проведения анализа. Для получения первых ориентировочных данных часто пользуются так называемой картой Колтупа, на которой указаны спектральные области многих характеристических частот. Для окончательных выводов обычно требуется более тщательный анализ спектра. Иногда задача качественного анализа может быть решена простым сопоставлением спектра известного соединения и анализируемого вещества.
Применение ИК-спектроскопии чаще оказывается более полезным в качестве дополнительного метода при проведении идентификации чистых веществ после хроматографического разделения сложных компонентов пищевых продуктов. Инфракрасный спектр органического соединения является одним из наиболее однозначных физических свойств вещества. ИК-спектр более точно характеризует вещество, чем температура плавления, показатель преломления или плотность. При этом совсем не обязательно иметь образец известного для сравнения с определенным, а достаточно сопоставить полученный спектр с опубликованными кривыми поглощения. Однако для идентификации вещества необходимо знать, к какому классу органических соединений относится определяемое вещество.
Метод ИК-спектроскопии используется для определения содержания в пищевых продуктах витаминов А, К, В1, В2, В6, С, никотиновой кислоты, токоферолов и каротина. В комбинации с хроматографией ИК-спектроскопию можно применить для исследования ароматических веществ и ряда органических соединений.