Geophysical survey methods (after G. Pratt) (2000)

Survey method Measured parameter Physical Property Major Applications
Potentials      
Gravity Spatial variations in the local strength of the gravitational field of the Earth Local variations in density Mapping of regional structures, sedimentary basins, salt diapers, plutonic intrusions delineation, sand and gravel deposits, depth to bedrock
Magnetics Spatial variations in the local strength of the geomagnetic field Local variations in susceptibility and remanence Mapping of regional structures, airborne surveys, igneous intrusions, sea floor spreading, salt structures, mineral deposits, buried environmental hazards, archeology
Electrical      
Resistivity Earth resistance (applied voltage / measured current) Electrical resistivity (conductivity) Mineral prospecting, engineering and hydrogeology, contaminant mapping, construction site investigation, groundwater
Induced polarization (IP) Voltage decay, or frequency dependent resistance Electrical capacitance Detection of disseminated mineral deposits, aquifer mapping, contaminant mapping
Self-potential (SP) Natural electric potential Electro-chemical activity Mineral prospecting, graphite detection, hydrogeology, geothermal studies
Electromagnetic (EM) Secondary (induced) electromagnetic fields Electrical conductivity and inductance Deep mineral prospecting, airborne surveys, conducting faults, groundwater studies, detection of underground pipes and cables, agricultural studies
Ground Penetrating Radar Traveltimes, amplitudes, waveforms of reflected electromagnetic pulse Electrical conductivity, radar image Shallow sedimentary structures, water table detection, bedrock mapping, mapping of hydrocarbon contaminants
Seismic      
Earthquake, Microseismic Location of earthquake, traveltime of elastic waves Compressional, shear velocity, fracture location Earth mapping at all scales from global to mine excavation
Refraction Traveltimes, amplitudes, waveforms of refracted elastic waves Compressional, shear wave velocities Crustal scale to engineering scale mapping of rock types, structural boundaries, foundations, hydrogeology
Reflection Traveltimes, amplitudes, waveforms of reflected elastic waves Compressional, shear wave contrasts, density contrasts, seismic image Oil and gas exploration, site surveying, bedrock mapping, detection of shallow faults and cavities.

Preparing to Drill (4100)

Once the site has been selected, it must be surveyed to determine its boundaries, and environmental impact studies may be done. Lease agreements, titles and right-of way accesses for the land must be obtained and evaluated legally. For off-shore sites, legal jurisdiction must be determined.

Once the legal issues have been settled, the crew goes about preparing the land:

1. The land is cleared and leveled, and access roads may be built.

2. Because water is used in drilling, there must be a source of water nearby. If there is no natural source, they drill a water well.

3. They dig a reserve pit, which is used to dispose of rock cuttings and drilling mud during the drilling process, and line it with plastic to protect the environment. If the site is an ecologically sensitive area, such as a marsh or wilderness, then the cuttings and mud must be disposed offsite -- trucked away instead of placed in a pit.

Once the land has been prepared, several holes must be dug to make way for the rig and the main hole. A rectangular pit, called a cellar, is dug around the location of the actual drilling hole. The cellar provides a work space around the hole, for the workers and drilling accessories. The crew then begins drilling the main hole, often with a small drill truck rather than the main rig. The first part of the hole is larger and shallower than the main portion, and is lined with a large-diameter conductor pipe. Additional holes are dug off to the side to temporarily store equipment -- when these holes are finished, the rig equipment can be brought in and set up.

Setting Up the Rig
Depending upon the remoteness of the drill site and its access, equipment may be transported to the site by truck, helicopter or barge. Some rigs are built on ships or barges for work on inland water where there is no foundation to support a rig (as in marshes or lakes). Once the equipment is at the site, the rig is set up. Here are the major systems of a land oil rig:



  • Power system
    • large diesel engines - burn diesel-fuel oil to provide the main source of power
    • electrical generators - powered by the diesel engines to provide electrical power
  • Mechanical system - driven by electric motors
    • hoisting system - used for lifting heavy loads; consists of a mechanical winch (drawworks) with a large steel cable spool, a block-and-tackle pulley and a receiving storage reel for the cable
    • turntable - part of the drilling apparatus
  • Rotating equipment - used for rotary drilling
    • swivel - large handle that holds the weight of the drill string; allows the string to rotate and makes a pressure-tight seal on the hole
    • kelly - four- or six-sided pipe that transfers rotary motion to the turntable and drill string
    • turntable or rotary table - drives the rotating motion using power from electric motors
    • drill string - consists of drill pipe (connected sections of about 30 ft / 10 m) and drill collars (larger diameter, heavier pipe that fits around the drill pipe and places weight on the drill bit)
    • drill bit(s) - end of the drill that actually cuts up the rock; comes in many shapes and materials (tungsten carbide steel, diamond) that are specialized for various drilling tasks and rock formations
  • Casing - large-diameter concrete pipe that lines the drill hole, prevents the hole from collapsing, and allows drilling mud to circulate
  • Circulation system - pumps drilling mud (mixture of water, clay, weighting material and chemicals, used to lift rock cuttings from the drill bit to the surface) under pressure through the kelly, rotary table, drill pipes and drill collars
    • pump - sucks mud from the mud pits and pumps it to the drilling apparatus
    • pipes and hoses - connects pump to drilling apparatus
    • mud-return line - returns mud from hole
    • shale shaker - shaker/sieve that separates rock cuttings from the mud
    • shale slide - conveys cuttings to the reserve pit
    • reserve pit - collects rock cuttings separated from the mud
    • mud pits - where drilling mud is mixed and recycled
    • mud-mixing hopper - where new mud is mixed and then sent to the mud pits
  • Derrick - support structure that holds the drilling apparatus; tall enough to allow new sections of drill pipe to be added to the drilling apparatus as drilling progresses
  • Blowout preventer - high-pressure valves (located under the land rig or on the sea floor) that seal the high-pressure drill lines and relieve pressure when necessary to prevent a blowout (uncontrolled gush of gas or oil to the surface, often associated with fire)
Geophysical survey methods (after G. Pratt) (2000) - student2.ru Anatomy of an oil rig
Geophysical survey methods (after G. Pratt) (2000) - student2.ru Drill-mud circulation system

ЧТЕНИЕ ХИМИЧЕСКИХ ФОРМУЛ

Латинские буквы, входящие в уравнения или обозначающие названия химических элементов, читаются как английские буквы в алфавите.

В формулах химических соединений и уравнений химических

реакций цифра перед обозначением элемента указывает число молекул и читается следующим образом:

2MnO2 [‘tu:’molikju:lz əv ‘em ‘en ‘ou ’tu:]

Знаки «+» и «–», стоящие в левом верхнем углу, обозначают

положительную и отрицательную валентность иона:

Н+ hydrogen ion [‘haidridZən ‘aiən] или

univalent positive hydrogen ion [ju:ni’veilənt ‘pozitiv ‘hai- dridZən ‘aiən]

Cu++

divalent positive cuprum ion [‘daiveilənt ‘pozətiv ‘kju:prəm ‘aiən]

Al

+++

trivalent positive aluminium ion [‘tri: veilənt ‘pozətiv ,ælju’minijəm aiən]

Cl

negative chlorine ion [‘negətiv ‘klo:’ri:n ‘aiən] или

negative univalent chlorine ion [‘negətiv ‘ju:ni’veilənt ‘klo:’ri:n ‘aiən]

Знак «–» или «:» обозначает одну связь и не читается:

.. Cl

:Cl : ÷

:Cl:C:Cl или Cl ¾ C ¾ Cl [‘si: ‘si: ‘el ‘fo:]

:Cl: ú

Cl

Знак «=» или «::» обозначает две связи и также не читается:

..

:О::С::О: или О=С=О [‘si: ‘ou ‘tu:]

Знак «+» читается: plus, and или together with

Знак «=» читается: give или form

Знак «→» читается: give, pass over to или lead to (пример 3)

Знак «←» читается: forms или is formed from (пример 8) или

form или are formed (пример 7: так как подлежащее во мн. ч.)

( ) round brackets [‘raund ‘brækits] – круглые скобки

[ ] square brackets [‘skwεə ‘brækits] – квадратные скобки

·(x) multiplication sign (знак умножения) (пример 10)

Примеры чтения химических формул

1. 4KCl [‘fo:’molikju:lz əv ‘ke ‘si: ‘el]

2. 4HCl + O2 = 2Cl2 + 2H2O [‘fo:’molikju:lz əv ‘eit∫ ‘si: ‘el plAs ‘ou

‘tu: ‘giv ‘tu: ‘molikju:lz əv ‘si: ‘el ‘tu: ənd ‘tu: ‘molikju:lz əv ‘eit∫ ‘tu: ‘ou]

3. Zn + CuSO4 = Cu + ZnSO4 [‘zed ‘en ‘plAs ‘si: ‘ju: ‘es ‘ou ‘fo:

‘giv ‘si: ‘ju: ‘plAs ‘zed ‘en ‘es ‘ou fo:]

4. PCl3 + 2Cl → PCl5 [‘pi: ‘si: ‘el ‘θri: plAs ‘tu: ‘molikju:lz əv ‘si:

‘el ‘giv ‘pi: ‘si: ‘el ‘faiv]

5. H2 + J2 ← 2HJ [‘eit∫ ‘tu: ‘plAs ‘dZei ‘tu: ‘fo:m ənd a: ‘fo:md

frəm ‘tu: ‘molikju:lz əv ‘eit∫ ‘dZəi]

6. C2H2 + H2O → CH3CHO [‘si: ‘tu: ‘eit∫ ‘tu: ‘plAs ‘eit∫ ‘tu: ‘ou

giv ‘si: ‘eit∫ ‘θri: ‘si: ‘eit∫ ‘ou]

7. N2 + 3H2 ← 2NH3 [‘en ‘tu: ‘plAs ‘θri: ‘molikju:lz əv ‘eit∫ ‘tu:

‘fo:m ənd a: ‘fo:md frəm ‘tu: ‘molikju:lz əv ‘en ‘eit∫ ‘θri: ]

8. AcOH ← AcO-

+ H+

[‘ei ‘si: ‘ou ‘eit∫ ‘fo:mz ənd iz ‘fo:md ‘frəm ‘ei ‘si: ‘negətiv ‘oksidZən ‘aiən ‘plAs ‘haidrodZən ‘aiən ]

H

|

H — H — C — H [‘si: ‘eit∫ ‘fo:]

|

H

9. Al2 (SO4)3 [‘ei ‘el ‘tu: ‘raund ‘brækits ‘oupənd ‘es ‘ou ‘fo ‘raund ‘brækits ‘klousd ‘θri: ]

10. a·b=c a multiplied by b equals c

Contents:

Part 1

Text 1 Geology (4500)

Text 2 The subject matter of geology (2800)

Text 3 Rocks (6400)

Text 4 Sedimentary rocks (4500)

Наши рекомендации