Методы выделения ферментов

Процесс выделения какого-либо белка начинается с переведения белков ткани в раствор. Для этого ткань (или материал), из которой получают фермент, тщательно измельчают в гомогенизаторе в присутствии буферного раствора. Для лучшего разрушения клеток к материалу добавляют кварцевый песок, если материал растирают в ступке. В результате получают кашицу – гомогенат.

При выделении ферментов из тканей живых организмов, в том числе растительных, необходимо соблюдать условия, не вызывающие денатурацию белков. Все работы проводят при пониженной температуре (4 °С) и при оптимальных для данного фермента значениях рН среды буферного раствора. Кроме того, желательно использовать ткани, в которых находилось большое количество данного фермента, так как в этом случае операции по выделению и очистке белка-фермента облегчаются.

После перевода ферментов из ткани в растворенное состояние гомогенат подвергают центрифугированию для отделения нерастворимой части материала, а затем в отдельных фракциях экстракта-центрифугата выделяют исследуемые ферменты.

Для получения очищенных препаратов ферментов применяются те же способы выделения, что и при работе с белками.

Осаждение белков органическими растворителями.

Высаливание.

Метод электрофореза.

Метод ионообменной хроматографии.

Метод центрифугирования.

Метод гельфильтрации.

Метод афинной хроматографии, или метод хроматографии по сродству.

Избирательная денатурация.

Свойства ферментов

7.1 Активность ферментов. Одним из основных отличительных свойств ферментов является их очень высокая активность. По силе каталитического действия (активности) ферменты в сотни тысяч раз превосходят обычные катализаторы. Ферменты повышают скорость каталитических реакций в 108…1020 раз.

Для выражения каталитической активности согласно рекомендациям Международного биохимического союза используется катал. Катал (кат) – это каталитическая активность, способная осуществить реакцию со скоростью, равной 1 молю в секунду, в заданной системе измерения активности. В большинстве случаев каталитическая активность выражается в микрокаталах (мккат), нанокаталах (нкат) или пикокаталах (пкат), чему отвечают скорости реакций, выражающиеся в микромолях и пикомолях в секунду.

Одной из важнейших производных величин является удельная каталитическая активность фермента, которую можно выразить в каталах на 1 кг (кат/кг). Другой производной величиной является молярная каталитическая активность, выражаемая в каталах на моль фермента.

7.2 Специфичность ферментов. Специфичность (избира-тельность) действия ферментов выражается в их способности катализировать строго определенную реакцию, действовать на определенный субстрат или даже на определенную связь в этом субстрате без образования в итоге побочных продуктов.

Существование определенных ферментов для каждого типа химических реакций, происходящих в клетке, – основной закон биологии. Специфичность ферментов обусловлена наличием в них молекулы белка.

Различают несколько видов специфичности – абсолютную, относительную и стереохимическую.

7.2.1 Абсолютная специфичность проявляется в том, что фермент действует только на один субстрат, даже на определенную связь в этом субстрате.

Уреаза обладает абсолютной специфичностью к мочевине. Этот фермент катализирует гидролиз мочевины на аммиак и диоксид углерода:

Методы выделения ферментов - student2.ru

Абсолютной специфичностью обладает каталаза, расщепляющая пероксид водорода на воду и кислород:

H2O2 ® H2O + 1/2 O2

7.2.2 Относительная групповая специфичность фермента проявляется в том, что он может действовать не на один, а на несколько субстратов, относящихся к одному или нескольким классам органических соединений. Так, фермент пируватдекарбоксилаза катализирует декарбоксилирование пировиноградной кислоты с образованием уксусного альдегида и диоксида углерода. Но этот же фермент декарбоксилирует и другие a-кетокислоты с более длинной углеродной цепочкой, однако скорость реакции с удлинением цепи заметно падает.

7.2.3 Стереохимической специфичностью. Ферменты действуя только на определенные стереоизомерные формы субстрата.

Специфичность действия ферментов приводит к тому, что превращение веществ в организме происходит строго упорядоченно, определяя путь, по которому идет превращение веществ. Благодаря специфичности фермент направляет реакцию по одному и тому же пути.

7.3 Лабильность ферментов. Это зависимость их активности от факторов внешней среды. На скорость ферментативной реакции влияют следующие факторы.

7.3.1 Влияние температуры. Влияние температуры на действие ферментов проявляется в той же степени, что и на все химические процессы. Повышение температуры на 10 °С согласно правилу Вант-Гоффа увеличивает скорость ферментативной реакции в 2…3 раза. Однако такое ускорение наблюдается в строго определенных температурных пределах – до 40 °С (рис. 3). Оптимальная температура не остается постоянной, с увеличением продолжительности реакции она сдвигается в сторону более низких температур. Такой характер влияния температуры связан с действием двух факторов: с одной стороны, с увеличением температуры возрастает скорость ферментативной реакции, а с другой – происходит инактивация фермента вследствие денатурации белка, что приводит к непрерывному уменьшению концентрации активного фермента.

На процесс инактивации ферментов оказывает влияние содержание воды, так как в высушенном состоянии ферменты более термостабильны. Например, триацилглицерол-липаза сохраняет свою активность в сухих семенах клещевины на 50 % после их прогревания при 120 °С в течение 2 ч.

Методы выделения ферментов - student2.ru

Рис. 3. Зависимость скорости υ ферментативной реакции

от температуры t (°C)

Тепловая инактивация ферментов почти всегда является результатом денатурации белка, входящего в состав фермента.

7.3.2 Влияние кислотности среды (рН). Для каждого фермента характерна определенная область оптимальных значений рН, при которых фермент проявляет максимальную активность (рис. 4).

Методы выделения ферментов - student2.ru

Рис. 4. Зависимость скорости υ ферментативной реакции от рН cреды

Влияние рН среды на действие ферментов основано на том, что происходит изменение заряда белка различных групп в активном центре фермента, вызывающее существенное изменение конформации полипептидной цепи. Для каждого фермента известен оптимум рН, при котором его каталитическая активность максимальна. Ферменты наиболее активны в относительно узком пределе колебаний рН. Большинство растительных ферментов имеет оптимум в пределах физиологических значений рН – 4,0…7,0 (α-амилаза более чувствительна к подкислению).

7.3.3 Влияние ингибиторов и активаторов. Действие большинства ферментов зависит от наличия ряда веществ, приводящих к инактивации ферментов. Эти вещества получили название ингибиторов.

Ингибиторы бывают общего действия и специфические. Ингибиторы общего действия действуют на белковую часть фермента, а специфические – блокируют активный центр фрмента.

Ингибиторы подразделяют на обратимые и необратимые. Необратимые ингибиторы связывают или разрушают функциональные группы молекулы фермента, необходимые для проявления его каталитической активности, при этом активность фермента не восстанавливается даже в том случае, если ингибитор удаляется каким-либо способом.

Участок молекулы фермента, к которому присоединяется ингибитор, вызывающий изменение конформации фермента, называется аллостерическим центром, а соответствующие ферменты – аллостерическими (от греческого слова «аллос» – другой). Вещества, которые присоединяются к аллостерическому центру, называются эффекторами.

Активаторами называются вещества, которые увеличивают скорость ферментативных реакций. К ним относятся ионы некоторых металлов. Для активирования цитохромоксидазы, каталазы, пероксидазы необходимы ионы железа, полифенолоксидазы – ионы меди, гексокиназы – ионы магния и т. д. К активаторам относятся также органические вещества, содержащие амино- и сульфгидрильные группы.

Наши рекомендации