Полезность регулярных транспортных поездок
Функции полезности представляют собой в своей основе способы описания потребительского выбора: если выбран товарный набор X при том, что товарный набор Y является доступным, то X должен обладать большей полезностью, чем Y. Изучая выбор, сделанный потребителями, можно вывести оценочную функцию полезности, которая адекватно описала бы их поведение.
Эта идея получила широкое применение в области экономики транспорта при изучении поведения потребителей в отношении регулярных транспортных поездок. В большинстве крупных городов у лиц, совершающих регулярные транспортные поездки, имеется выбор: пользоваться общественным транспортом или ездить на работу на машине. Каждую из этих альтернатив можно рассматривать как набор различных характеристик: времени нахождения в пути, времени ожидания, наличных издержек, комфорта, удобства и т.п. Обозначим продолжительность времени нахождения в пути для каждого рода поездки через x1, продолжительность времени ожидания для каждого рода поездки через x2 и т.д.
Если (x1, x2, ..., xn) представляет, скажем, значения n различных характеристик автомобильных поездок, а (y1, y2, ..., yn) — значения характеристик поездок на автобусе, то можно рассмотреть модель, в которой потребитель принимает решение о том, поехать ли ему на машине или на автобусе, исходя из предпочтения одного набора указанных характеристик другому.
Говоря более конкретно, предположим, что предпочтения среднего потребителя в отношении указанных характеристик могут быть представлены функцией полезности вида
U(x1, x2, ..., xn) = b1x1 + b2x2 + ... + bnxn,
где коэффициенты b1, b2 и так далее — неизвестные параметры. Разумеется, любое монотонное преобразование данной функции полезности не хуже описало бы потребительский выбор, однако с точки зрения статистики, работать с линейной функцией особенно легко.
Предположим теперь, что перед нами ряд сходных между собой потребителей, которые выбирают, поехать на автомобиле или на автобусе, основываясь при этом на конкретных данных о продолжительности времени поездок, об издержках и других характеристиках поездок, с которыми они сталкиваются. В статистике имеются технические приемы, которые можно использовать для нахождения значений коэффициентов bi, при i = 1,..., n, наиболее подходящих для наблюдаемой структуры выбора, произведенного данным множеством потребителей. Эти технические приемы статистики позволяют вывести оценочную функцию полезности для различных способов транспортного передвижения.
В одном из исследований приводится функция полезности вида
U(TW, TT, C) =–0,147TW – 0,0411TT – 2,24C, (4.2)
где TW — общее время ходьбы до автобуса или автомобиля или от него,
TT — общее время поездки в минутах,
C — общая стоимость поездки в долларах.
С помощью оценочной функции полезности, приведенной в книге Доменика и МакФаддена, удалось верно описать выбор между автомобильным и автобусным транспортом для 93% домохозяйств взятой авторами выборки.
Коэффициенты при переменных в уравнении (4.2) показывают удельный вес, приписываемый средним домохозяйством различным характеристикам регулярных поездок на транспорте, т. е. предельную полезность каждой такой характеристики. Отношение одного коэффициента к другому показывает предельную норму замещения одной характеристики другой. Например, отношение предельной полезности времени ходьбы пешком к предельной полезности общей продолжительности поездки указывает на то, что средний потребитель считает время ходьбы пешком примерно в 3 раза более тягостным, чем время поездки. Иными словами, потребитель был бы готов затратить 3 дополнительные минуты на поездку, чтобы сэкономить 1 минуту ходьбы пешком.
Аналогично отношение стоимости поездки к общей продолжительности поездки указывает на выбор среднего потребителя в отношении этих двух переменных. В данном обследовании средний пассажир оценивал минуту времени поездки на транспорте в 0,0411/2,24 = 0,0183 долл. в минуту, что составляет 1,10$ в час. Для сравнения часовая зарплата среднего пассажира в 1967 г. составила около 2,85$ в час.
Такие оценочные функции полезности могут быть очень ценны для определения того, стоит ли осуществлять какие-либо перемены в системе общественного транспорта. Например, в приведенной выше функции полезности одним из важных факторов, объясняющих, чем руководствуются потребители в своем выборе, выступает продолжительность поездки. Городское управление транспортом могло бы при некоторых затратах увеличить число автобусов, чтобы сократить эту общую продолжительность поездки. Но послужит ли дополнительное число пассажиров оправданием возросших затрат?
Исходя из имеющейся функции полезности и выборки потребителей можно сделать прогноз относительно того, какие потребители захотят совершать поездки на автомобиле, а какие предпочтут автобус. Это позволит получить некоторое представление о том, будет ли выручка достаточной для покрытия добавочных издержек.
Кроме того, можно использовать предельную норму замещения для получения представления об оценке каждым потребителем сокращения времени поездок. Как мы видели выше, согласно исследованию Доменика и МакФаддена, средний пассажир в 1967 г. оценивал время поездки по ставке 1,10$ в час. Иными словами, он готов был заплатить около 37 центов, чтобы сократить время поездки на 20 минут. Это число дает нам меру выигрыша в долларах от более своевременного предоставления автобусных услуг. Чтобы определить, стоит ли игра свеч, указанный выигрыш следует сравнить с затратами на это более своевременное предоставление автобусных услуг. Наличие количественной меры выигрыша, безусловно, способствует принятию рациональных решений в области транспортной политики.
Краткие выводы
1.Функция полезности — это просто способ представить ранжирование предпочтений или выразить его в краткой форме. Численные значения уровней полезности не имеют внутреннего смысла.
2.Если дана какая-либо функция полезности, то любая функция, являю-щаяся монотонным преобразованием данной, будет представлять те же самые предпочтения.
3.Предельную норму замещения MRS можно рассчитать, исходя из функции полезности, воспользовавшись формулой MRS = Dx2/Dx1 = –MU1/MU2.
ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ
1.В тексте говорится, что возведение в нечетную степень представляет собой монотонное преобразование. А что можно сказать о возведении в четную степень? Является ли оно монотонным преобразованием? (Под-сказка: рассмотрите случай f(u) = u2.)
2.Какие из указанных преобразований являются монотонными? 1) u = 2v – 13; 2) u = –1/v2; 3) u = 1/v2; 4) u = lnv; 5) u = –e-v; 6) u = v2; 7) u = v2 для v > 0; 8) u = v2 для v <0.
3.В тексте утверждается, что в случае монотонных предпочтений диагональная линия, проходящая через начало координат, пересечет каждую кривую безразличия в точности один раз. Можете ли вы дать строгое доказательство этого? (Подсказка: что произошло бы, если бы эта линия пересекла какую-нибудь кривую безразличия дважды?)
4.Какого рода предпочтения представлены функцией полезности вида ? Что можно сказать в этом смысле о функции полез-ности v(x1, x2) = 13x1 + 13x2?
5.Какого рода предпочтения представлены функцией полезности вида ? Является ли функция полезности монотонным преобразованием функцииu(x1, x2)?
6.Рассмотрим функцию полезности . Предпочтения какого рода она представляет? Является ли функция монотонным преобразованием функции u(x1, x2)? Является ли функция монотонным преобразованием функции u(x1, x2)?
7.Можете ли вы объяснить, почему проведение монотонного преобра-зования функции полезности не изменяет предельной нормы замещения?
ПРИЛОЖЕНИЕ
Во-первых, проясним, что понимается под "предельной полезностью". Как и вообще в экономической теории, слово "предельный" подразумевает всего лишь производную. Поэтому предельная полезность блага 1 есть всего лишь
Обратите внимание на то, что здесь мы применили частную производную, поскольку предельная полезность товара 1 подсчитывается при сохранении количества товара 2 постоянным.
Теперь можно по-иному вывести MRS, чем в тексте, прибегнув для этого к использованию дифференциального исчисления. Сделаем это двумя способами: 1) используя дифференциалы, 2) используя неявные функции.
При первом методе рассмотрим такое изменение (dx1, dx2), при котором полезность остается постоянной. Итак, мы хотим, чтобы
Первый член показывает возрастание полезности в результате малого изменения dx1, второй — возрастание полезности в результате малого изменения dx2. Мы хотим выбрать эти изменения таким образом, чтобы совокупное изменение полезности du было равным нулю. Выразим dx2/dx1 как
что является просто выведенным с применением математического анализа аналогом приведенного в тексте уравнения (4.1).
При втором методе представим себе, что кривая безразличия описывается функцией x2(x1). Иначе говоря, для каждого значения x1 функция x2(x1) показывает, сколько нам нужно x2, чтобы попасть на эту конкретную кривую безразличия. Следовательно, функция x2(x1) должна удовлетворять тождеству
u(x1, x2(x1))≡ k,
где k — показатель уровня полезности рассматриваемой кривой безразличия.
Можно продифференцировать обе части этого тождества по x1, получив
Заметьте, что x1 появляется в этом тождестве в двух местах, так что изменение x1 изменит функцию двояким образом, и следует брать производную в каждой точке, где появляется x1.
Далее выразим из этого уравнения ¶x2(x1)/¶x1 и получим
т. е. в точности тот же результат, что и раньше.
Метод использования неявных функций несколько строже, но метод дифференцирования приводит к результату более прямым путем, если только не сделать какой-то глупой ошибки.
Предположим, что мы проводим монотонное преобразование функции полезности, скажем, функции v(x1, x2) = f (u(x1, x2)). Подсчитаем MRS для данной функции полезности. Используя цепное правило взятия производной, получим
так как член ¶f/¶u сокращается в числителе и в знаменателе. Это показывает, что MRS не зависит от того, в каком виде представлена полезность.
Это дает нам полезный способ распознавания предпочтений, представленных разными функциями полезности: если даны две функции полезности, просто подсчитайте предельные нормы замещения и посмотрите, не одинаковы ли они. Если это так, то двум рассматриваемым функциям полезности соответствуют одни и те же кривые безразличия. И если направление возрастания предпочтений для каждой функции полезности одно и то же, то и предпочтения, описываемые этими функциями полезности, должны быть одинаковы.
ПРИМЕР: Предпочтения Кобба — Дугласа
MRS для случая предпочтений Кобба — Дугласа легко подсчитать, используя выведенную выше формулу.
Если выберем представление этих предпочтений с помощью логарифмов, имеющее вид
u(x1, x2) = c lnx1 + d lnx2,
то получим
Обратите внимание, что в данном случае MRS зависит только от отношения двух параметров и от количества двух товаров.
Что будет, если выбрать для представления рассматриваемых предпочтений степенную функцию Кобба — Дугласа вида
?
Тогда имеем
т.е. то же самое, что и раньше. Разумеется, с самого начала было известно, что монотонное преобразование не может изменить предельную норму замещения!
Глава 5 - ВЫБОР
В настоящей главе объединим рассуждения о бюджетном множестве и теорию предпочтений, чтобы исследовать оптимальный выбор, ocуществляемый потребителями. Ранее было сказано, что экономическая модель потребительского выбора сводится к выбору людьми наилучшего набора из числа доступных. Теперь можно перефразировать это, выражаясь более профессионально: "потребители выбирают наиболее предпочитаемый набор из своих бюджетных множеств".
Оптимальный выбор
Типичный случай оптимального выбора показан на рис. 5.1. Здесь на одном и том же графике изображены бюджетное множество и несколько кривых безразличия. Мы хотим найти тот набор из данного бюджетного множества, который находится на самой высокой кривой безразличия. Поскольку предпочтения стандартны, так что б?льшее предпочитается меньшему, можно ограничиться рассмотрением наборов, лежащих на бюджетной линии, не заботясь о тех наборах, которые находятся под ней.
Будем двигаться влево из исходного положения в правом углу бюджетной линии. По мере движения вдоль бюджетной линии мы замечаем, что переходим на все более и более высокие кривые безразличия. Мы остановимся, когда попадем на самую высокую кривую безразличия, которая лишь касается бюджетной линии. На рассматриваемом графике товарный набор, связываемый с самой высокой кривой безразличия, лишь касающейся бюджетной линии, обозначен ( , ).
Выбор ( , )является оптимальным выбором для потребителя. Множество наборов, которые он предпочитает ( , ), а именно, множество наборов, располагающееся над его кривой безразличия, не пересекает наборы, которые он может себе позволить приобрести, а именно, наборы под бюджетной линией. Таким образом, набор ( , ) — это наилучший набор, который потребителю по карману.
Рис. 5.1 | Оптимальный выбор. Оптимальное потребление приходится на точку, в которой кривая безразличия касается бюджетной линии. |
Обратите внимание на важное свойство этого оптимального набора: при данном выборе кривая безразличия касается бюджетной линии. Если призадуматься, так и должно быть: если бы кривая безразличия не касалась бюджетной линии, то она бы ее пересекала, а если бы она пересекала бюджетную линию, то существовала бы некая близлежащая точка на бюджетной линии, находящаяся выше кривой безразличия, а это означает, что наш исходный набор не мог быть оптимальным.
Должноли это условие касания непременно соблюдаться в точке оптимального выбора? Оно, скажем так, соблюдается не вовсех случаях, но в наиболее интересных случаях соблюдается. Что верно всегда, так это то, что в точке оптимального выбора кривая безразличия не может пересекать бюджетную линию. Так когда же "непересечение" подразумевает касание? Вначале рассмотрим исключения.
Во-первых, бывают случаи, когда к кривой безразличия невозможно провести касательную, как на рис.5.2. Здесь кривая безразличия имеет излом в точке оптимального выбора, так что касательная просто неопределима, поскольку математическое определение касательной требует существования единственной касательной в каждой точке. Этот случай не имеет большого экономического значения, скорее, он доставляет неудобства.
Ломаные предпочтения. Здесь оптимальный потребительский набор находится в точке, в которой к кривой безразличия нельзя провести касательную. | Рис. 5.2 |
Второе исключение представляет больший интерес. Предположим, что в точке оптимума потребление какого-либо товара равно нулю, как на рис.5.3. Тогда наклоны кривой безразличия и бюджетной линии различны, однако кривая безразличия по-прежнему не пересекает бюджетной линии. Мы говорим, что на рис.5.3 представлен краевой оптимум, в то время как на рис.5.1 — внутренний оптимум.
Если исключить из рассмотрения "ломаные предпочтения", о примере, приведенном на рис.5.2, можно забыть. Если же мы хотим ограничиться рассмотрением лишь внутренних оптимумов, можно не рассматривать и второй пример. В случае внутреннего оптимума с плавно убывающими кривыми безразличия наклон кривой безразличия и наклон бюджетной линии должны быть одинаковы...потому что если бы они различались, кривая безразличия пересекла бы бюджетную линию, и мы не могли бы находиться в оптимальной точке.
Рис. 5.3 | Краевой оптимум. Оптимальное потребление предполагает нулевое потребление товара 2. Бюджетная линия не является касательной к кривой безразличия. |
Мы нашли необходимое условие, которому должен удовлетворять оптимальный потребительский выбор. Если оптимальный выбор предполагает потребление некоторого количества обоих товаров, т. е. речь идет о внутреннем оптимуме, то бюджетная линия с необходимостью будет выступать касательной к кривой безразличия. Но является ли соблюдение условия касания достаточным для того, чтобы набор был оптимальным? Можем ли мы быть уверены в том, что любой набор, находящийся в точке касания кривой безразличия и бюджетной линии, характеризует оптимальный потребительский выбор?
Взгляните на рис.5.4. В изображенном на нем случае имеются три набора, удовлетворяющих условию касания, и все три касания — внутренние, но лишь два из указанных наборов оптимальны. Следовательно, вообще говоря, условие касания — лишь необходимое условие оптимальности, но не достаточное.
Имеется, однако, один важный случай, в котором это условие выступает достаточным: речь идет о предпочтениях, представленных кривыми безразличия, выпуклыми к началу координат. В случае таких предпочтений любая точка, удовлетворяющая условию касания, должна быть точкой оптимума. Геометрически это очевидно: поскольку кривые безразличия, выпуклые к началу координат, должны изгибаться по направлению от бюджетной линии, они не могут отклониться назад, чтобы вновь ее коснуться.
Случай более чем одного касания. Налицо три касания, но лишь две точки оптимума, так что условие касания является необходимым, но не достаточным. | Рис. 5.4 |
Рис.5.4 показывает также, что, вообще говоря, может иметься более одного оптимального набора, удовлетворяющего условию касания. Однако выпуклость кривых безразличия к началу координат и здесь накладывает ограничение. Если кривые безразличия строго выпуклы к началу координат — не имеют никаких прямых участков, то на каждой бюджетной линии будет находиться лишь одна точка оптимального выбора. Хотя это можно показать математически, это представляется вполне правдоподобным и при взгляде на рисунок.
Условие равенства MRS наклону бюджетной линии в точке внутреннего оптимума графически очевидно, но каков его экономический смысл? Вспомним одну из приведенных выше интерпретаций MRS — трактовку ее как нормы обмена, при которой потребитель хочет остаться в данной точке. Рынком потребителю предлагается норма обмена, равная –p1/p2: отказавшись от одной единицы товара 1, вы можете купить p1/p2 единиц товара 2. Если потребитель хочет остаться в точке, соответствующей данному потребительскому набору, то это должна быть точка, в которой MRS равна указанной норме обмена:
MRS = – .
Можно рассуждать и по-другому: представить себе, что произошло бы, если бы MRS отличалась от отношения цен. Предположим, например, что MRS есть Dx2/Dx1 = —1/2, отношение цен составляет 1/1. Это означает, что потребитель готов отказаться от двух единиц товара 1, чтобы получить взамен одну единицу товара 2, однако на рынке эти товары можно обменять только в соотношении "один к одному". Таким образом, потребитель был бы, конечно, готов отказаться от некоторого количества товара 1, чтобы приобрести несколько больше товара 2. Во всех случаях, когда MRS отличается по величине от отношения цен, потребитель не может находиться в точке своего оптимального выбора.
Потребительский спрос
Оптимальный выбор товаров 1 и 2 при некой комбинации цен и дохода называется набором спросапотребителя (под набором спроса здесь и далее автор понимает товарный набор, накоторый потребитель предъявляет спрос — прим. науч.ред.). Вообще с изменением цен и дохода оптимальный выбор потребителя будет меняться. Функция спроса есть функция, связывающая этот оптимальный выбор, или количества спроса, с различными значениями цен и доходов.
Будем представлять функции спроса зависящими как от цен, так и от дохода: x1(p1, p2, m) и x2(p1, p2, m). Для каждой другой комбинации цен и дохода будет существовать своя комбинация товаров, выражающая оптимальный выбор потребителя. Как мы вскоре убедимся на ряде примеров, на базе различных предпочтений формируются разные функции спроса. Главной нашей задачей на протяжении нескольких последующих глав будет изучение того, как ведут себя эти функции спроса — как меняется оптимальный выбор потребителя по мере изменения цен и дохода.
5.3. Некоторые примеры
Применим рассмотренную нами модель потребительского выбора к примерам предпочтений, описанным в гл. 3. Для каждого примера процедура будет в основном одна и та же: надо графически представить кривые безразличия и бюджетную линию и найти точку касания бюджетной линии с самой высокой из кривых безразличия.
Совершенные субституты
Случай совершенных субститутов проиллюстрирован на рис. 5.5. Перед нами три возможных случая этого рода. Если p2>p1, то наклон бюджетной линии менее крутой, чем наклон кривых безразличия. В этом случае оптимальный набор находится в точке, где потребитель тратит все свои деньги на товар 1. Если p1>p2, потребитель покупает только товар 2. И, наконец, если p1 = p2, существует целый ряд точек оптимального выбора — в этом случае оптимальным будет любое количество товаров 1 и 2, которое удовлетворяет заданному бюджетному ограничению. Таким образом, функция спроса на товар 1 будет иметь вид:
x1 = | m/p1 любое число от 0 до m/p1 | когда p1<p2; когда p1 = p2; когда p1>p2. |
Согласуются ли эти результаты со здравым смыслом? Они говорят лишь о том, что в случае совершенных субститутов потребитель купит тот из двух товаров, который дешевле. Если же цена обоих товаров одинакова, то потребителю все равно, какой из двух товаров купить.
Оптимальный выбор в случае совершенных субститутов. Если товары являются совершенными субститутами, оптимальный выбор всегда будет краевым. | Рис. 5.5 |
Совершенные комплементы
Случай совершенных комплементов иллюстрирует рис. 5.6. Обратите внимание на то, что точка оптимального выбора в данном случае всегда находится на луче под 45° (из начала координат, на котором потребитель покупает равные количества обоих товаров, независимо от уровня цен. Применительно к нашему примеру это означает, что люди, у которых две ноги, покупают обувь парами1.
Рис. 5.6 | Оптимальный выбор в случае совершенных комплементов. Если товары — совершенные комплементы, количества спроса всегда лежат на луче под 45° из начала координат, поскольку оптимальный выбор имеет место там, где х1 равен х2. |
Найдем координаты точки оптимального выбора алгебраически. Известно, что потребитель покупает одинаковое количество товаров 1 и 2 независимо от того, каковы их цены. Обозначим это количество буквой x. Тогда выбор потребителя должен удовлетворять бюджетному ограничению
p1x + p2x = m.
Решив это уравнение для x, получим оптимальные количества товаров 1 и 2:
x1= x2 = x = .
Функция спроса, отражающая оптимальный выбор, в данном случае получена совершенно интуитивно. Поскольку два товара всегда потребляются вместе, потребитель как бы тратит все деньги на один товар, цена которого равна p1+ p2.
Безразличные блага и антиблага
В случае безразличного блага потребитель тратит все деньги на товар, который ему нравится, и совсем не покупает безразличное благо. То же самое происходит, если один из товаров представляет для потребителя антиблаго. Так, если товар 1 — благо, а товар 2 — антиблаго, то функции спроса на эти товары будут иметь вид
x1 = ,
x2 = 0.
Дискретные товары
Предположим, что товар 1 — дискретный товар, приобретаемый только неделимыми единицами, а товар 2 — деньги, которые тратятся на все остальное. Выбирая 1, 2, 3, ... единицы товара 1, потребитель тем самым выбирает наборы (1, m — p1), (2, m — 2p1), (3, m — 3p1) и т.д. Мы можем просто сравнить полезности каждого из этих наборов и увидеть, у какого из них она наивысшая.
Можно также применять и анализ с использованием кривых безразличия, показанный на рис.5.7. Как всегда, оптимальным набором будет тот, который находится на самой высокой "кривой" безразличия. Если цена товара 1 очень высока, потребитель выберет нулевое потребление этого товара; при снижении цены он сочтет оптимальным потреблять одну единицу данного товара. Обычно по мере дальнейшего снижения цены потребитель предпочитает потреблять больше единиц товара 1.
Вогнутые предпочтения
Рассмотрим ситуацию, изображенную на рис.5.8. Представляет ли собой X оптимальный выбор? Нет! В случае предпочтений такого вида оптимальный выбор всегда будет краевым, как набор Z. Подумайте, каков может быть смысл предпочтений, описываемых вогнутыми кривыми безразличия. Если у вас имеются деньги на покупку мороженого и оливок, но вы не любите потреблять их вместе, вы потратите все деньги на покупку либо того, либо другого.
AВеличина спроса равна нулю BВеличина спроса равна одной единице
Рис. 5.7 | Дискретные товары. На рис. A спрос на товар 1 равен нулю, а на рис.B он составляет одну единицу. |
Рис. 5.8 | Оптимальный выбор в случае вогнутых предпочтений. Оптимальный выбор представлен не точкой внутреннего касания X, а точкой краевого равновесия Z, поскольку Z лежит на более высокой кривой безразличия. |
Предпочтения Кобба — Дугласа
Предположим, что функция полезности задана в виде функции Кобба —Дуг-ласа, u(x1, x2) = . В приложении к настоящей главе, используя дифференциальное исчисление, мы выводим координаты точек оптимального выбора для функции полезности данного вида. Они оказываются следующими:
x1 = , x2 = .
Эти функции спроса часто бывают полезны в алгебраических примерах, поэтому, возможно, стоит их запомнить.
Предпочтения Кобба — Дугласа обладают одним удобным свойством. Рассмотрим долю дохода, которую потребитель с предпочтениями Кобба — Дугласа тратит на товар 1. Если он потребляет x1 единиц товара 1, это обходится ему в р1х1, что составляет долю общего дохода, равную р1х1/m. Подставляя в это выражение функцию спроса для х1, получаем
.
Аналогично доля дохода, которую потребитель тратит на товар 2, составляет d/(c + d).
Таким образом, потребитель с предпочтениями Кобба — Дугласа всегда тратит на каждый товар постоянную долю своего дохода. Величина этой доли определяется соответствующим показателем степени в функции Кобба — Дугласа.
Вот почему часто бывает удобным пользоваться таким представлением функции Кобба — Дугласа, в котором сумма показателей степени равна 1. Если u(x1, x2) = , то можно непосредственно истолковывать a как долю дохода, затрачиваемую на товар 1. По этой причине мы будем обычно использовать для предпочтений Кобба — Дугласа данную форму записи.