Статистическое изучение вариаций. Показатели вариаций и методы их расчета.
Вариация – изминение изучаемого признака при переходе от одной единицы совокупности к др или от одного случая к др. Она необ-ма в качестве дополнения средних величин, средние величины дают обобщающую хар-ку совокупности по одному изучаемому признаку, но они не показывают пределы колебания данного признака. Сис-ма показателей вариации вкл след. эл-ты: Абсол.: 1.размах вариации – разность между наибольшим и наименьшим значении признаком в изучаемой сов-ти R=Xmax – Xmin. Он показ-т амплитуду колебаний изучаемого признака, гл. его достоинство – простота расчета. Но его использование ограничено, т к он не позволяет исследовать изминения признака внутри сов-ти; 2.среднее линейное отклонение – среднее знач. отклонений всех вариант от общей средней величины по данной сов-ти. Вычис-ся в 2-х формах: а) простая для не сгруппированных данных d=∑ (x- /n); б) взвешенная – для группировка d=∑ (x- )*f/∑f; 3.дисперсия – средний квадрат отклонений индивид-х знач. признака от общей средней. а) простая =∑ ( ; б) взвешенная =∑ ( /∑f. Не имеет размерности т.е в коэффициентах. 4.среднее квадратическое отклонение ; . Среднее квадрат-кое отклонение показывает абсолютную меру рассеивание признака у раз-х единиц изучаемой сов-ти. Относит. показатель: 5. Кооф. вариации – показ-т на сколько % в среднем все варианты отклоняются от обшей средней величины, показывает степень колебания признака V= *100. Совок-ть счит. однородной, если Кооф. вариации < 33%. Он широко испол. не только для сравнительной оценки вариации, но и для хар-ки однородности сов-ти.
13.Виды дисперсий и правила сложения дисперсий.Дисперсия-(от лат. рассеивание)- это средний квадрат отклонений индивидуальных значений признака от общей средней: 1 ; 2. . Дисперсия не имеет размерности- это коэфф-т. Дисп. обл. след. математическими свойствами: 1.дисперсия постоянной величины=0; 2.если все варианты значений признака уменьшить на одно и тоже число, то дисперсия не уменьшится; 3.если все варианты значений признака уменьшить в одно и тоже число раз(k раз), то дисперсия уменьшится в раз. Виды дисперсий:*общая, *межгрупповая, *внутригупповая, *дисперсия альтернативного признака. Показатели вариации применяются так же для определения тесноты связи между группировочными и результативными признаками. На вариацию признака влияют случ. и систематические причины. Для определения влияния какого-либо фактора на величину вариации признака исп-ют аналитические группировки. Вариация, которая обусловлена влиянием группировочного признака наз.межгрупповой вариацией- она измеряется при помощи межгрупповой дисперсии(дисперсия групповых средних величин). Межгрупповая дисперсия хар-ет изменение групповых или частных средних по отношению к общей средней величине, она определяется: , где - средняя величина групповая, - сумма всех частот. Внутригрупповая дисперсия- для определения влияния всех факторов, кроме группировочного, вычисляют внутригрупповые дисперсии, а затем определяют среднюю из внутригрупповых дисперсий. Средняя из внутригрупповых дисперсий характеризует вариацию результативного признака, которая возникает под влиянием всех остальных факторов кроме группировочного. Внутригрупповые, или частные, дисперсии определяются по формуле: =∑ (х - ) * f / f , где fi- веса признакаxв соответствующей i-й группе. Средняя внутригрупповых, или частных, дисперсий определяется по формуле ср. арифм. взвеш. дисперсий групп: .В математической статистике доказано, что общая дисперсия признака равна сумме межгрупповой и ср. арифм. внутригрупповых дисперсий: .Отношение межгрупповой дисперсии к общей дает коэф-т детерминации , характеризующий долю вариации группировочного признака в общем объеме вариации, или на сколько процентов уровень результативного признака определяется группировочным признаком. Этот показатель обычно выражается в процентах: . Корень квадратный из этого же отношения наз.эмпирическим корреляционным отношением(η). Он характеризует тесноту связи между призн.
14. Понятия о рядах динамики, их виды и правила построения. Динамика- раз-тие яв-й и процессов во времени. Ряд динамики – ряд статис-их показ-лей, кот распол-ны в хронологич последова-ти. Каждый ряд вкл 2 эл-та: 1. моменты или периоды времени; 2.уровни ряда или стат показ-ли, кот хах-ют изуч-ый объект. В зав от способа регистрации данных раз-ют 2 вида рядов динамики. 1.Интервальные- их особенности: - показатели можно суммировать получая при этом новый ряд динамики с более длительным интервалом, - чем больше интервал, тем больше абсол-ый показ-ль интервального ряда. 2.Моментные ряды- его показ-ли суммировать нельзя. Ряды динамики могут состоять из абсол-ых, относ-ых и средних величин.