Стекло. Состав и свойства стекла как аморфного материала.
Стекло –твердое аморфное вещество, способное после нагревания до вязкотекучего состояния снова превращаться при определенном режиме охлаждения в твердое вещество. Стекла получают путем переохлаждения расплава независимо от их состава и температурной области затвердевания. Они обладают в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния встеклообразное должен быть обратимым.
Физические свойства стекла – плотность, прозрачность, преломление и отражение света, теплопроводность, термическая устойчивость, твердость, прочность, электропроводность и др.
Самое важное свойство стекол – прозрачность в диапазоне длин волн видимого света. Оно определяется как отношение количества прошедших через стекло лучей ко всему световому потоку. Прозрачность большинства стекол 84 - 90 %; молочного стекла, толщиной 10 мм – от 12 до 51 %. Зависит прозрачность от толщины стекла, характера обработки поверхности, наличия примесей (особенно железа).
Плотность стекла зависит от его состава и характера термической обработки. Обычные стекла имеют плотность 2,5 г/см3, хрустальные – 3 г/см3 и выше.
Преломление стекла – это изменение направления распространения излучения при переходе через поверхность раздела стекло-воздух. Показатель преломления, т.е. отношение синуса угла падения к синусу угла преломления для воздуха – 1,0, для обыкновенного стекла – 1,5; для стекол с содержанием оксидов свинца – до 1,9. Показатель преломления стекол можно варьировать добавками (например, стекло сорта флинт с оксидом свинца).
Отражение света имеет значение для изделий, украшенных гранением. Гладкая поверхность стекла создает впечатление зеркального отраженного света. От шероховатой поверхности световой поток рассеивается во все стороны и поверхность воспринимается как матовая. Чем выше показатель преломления, тем выше коэффициент отражения. Для получения большего блеска стекла производят заточку граней под определенным углом: для обыкновенного стекла – 1000, для хрустального – 1200.
Теплопроводность, т.е. способность проводить тепло, у стекла невелика – в 600 раз меньше, чем у серебра, и в 400 раз меньше, чем у меди. Коэффициент теплопроводности стекол равен 0,34 - 0,96 Вт/м.град.
Термическая устойчивостьстекол зависит от ряда свойств – коэффициента термического расширения, теплопроводности, толщины и состава стекла, формы и размеров изделия, характера поверхности, наличия дефектов и др. В результате специальных обработок (полировки, титанизации, закалки, обработки литьем и др.) термическая стойкость стекла может быть увеличена в несколько раз.
Твердость – это способность стекла сопротивляться царапинам, проникновению в него другого тела. Отожженное стекло обладает большей твердостью. По шкале Мооса твердость стекол колеблется от 4,5 до 7,0.
Хрупкость – это способность стекла сопротивляться ударам. Стекло не способно к пластической деформации и поэтому является хрупким телом. Хрупкость зависит от химического состава, наименьшей хрупкостью обладают боросвинцовые стекла. При плохом отжиге, неоднородности строения, хрупкость увеличивается, изделия с выступающими деталями, углами также отличаются хрупкостью.
Электроизоляционные свойства стекла используют для создания изоляционных материалов. Стекло является изолятором электрического тока, хотя некоторая проводимость и возможна благодаря диффузии ионов. Проводимость быстро увеличивается с ростом температуры. Расплавленное стекло хорошо проводит ток, на этом основана его электроварка.
Химическая устойчивость стекла характеризуется высокой сопротивляемостью воздействию водных растворов, атмосферы, агрессивных сред.
Химический состав стекла различен в зависимости от требований, предъявляемых к свойствам стеклоизделий, от условий эксплуатации, а также способа выработки. Главной стеклообразующей частью большинства стекол является кремнезем (SiO2), который вводят в состав стекла с песком или кварцем. Состав оксидов, образующих стекла, ограничен главным образом оксидами, обладающими кислотными свойствами:, B2O3, P2O5, оксиды мышьяка и германия, а кроме того, и вещества, не являющиеся оксидами, например, сера, селен и флюорид свинца, также могут образовывать стекла. Кроме стеклообразователей имеется ряд оксидов, которые входят в состав стекла. Они называются модификаторами сетки (каркаса) стекла. К ним относятся основные оксиды щелочных и щелочноземельных металлов - Na2O, K2O, MgO, CaO. К третьей категории веществ относятся некоторые оксиды, которые в чистом виде не могут образовать каркаса стекла, но могут включаться в состав уже существующей сетки. Это – промежуточные оксиды. Примерами служат глинозем и оксид бериллия.
Стекла представляют собой сложные системы, состоящие не менее чем из пяти окислов. Названия стекол зависят от содержания в них тех или иных окислов: натриево-известковые, калиево-известковые, фосфатные, боратные, калиево-свинцовые (хрустальные) и др.
Структура стекла. Стекло является изотропным материалом, так как по всем направлениям в среднем имеет однородные структуру и свойства. Однако само строение стекла, т.е. внутреннее расположение его частиц окончательно не определено. Это связано с тем, что разные стека имеют различное строение, наблюдаются различия даже в строении основной массы стека и поверхностного его слоя, и кроме того, на строение стека влияет технологический процесс и другие факторы. Предложено несколько теорий строения стекла: кристаллитная; ионная; агрегативная.
По кристаллитной теории стекло состоит из кристаллитов. Кристаллиты - это мельчайшие, очень деформированные структурные образования. Кристаллитная теория позволила объяснить изменение коэффициентов термического расширения стекла, показателей преломления свет при различных температурах.
Согласно ионной теории стекло представляет собой непрерывную сетку с ионами или их группами в определенных положениях, но в отличии от настоящих кристаллов эта сетка не имеет симметрии и определенной периодичности. На основании этой теории можно объяснить изменение цвета при введении красителей в стекло.
Агрегативная теория строения стекла исходит из того, что в стекле всегда существует усложненные группировки – агрегаты молекул. При нагревании происходит распад этих группировок, при охлаждении сложность агрегатов и их число растут. При быстром охлаждении стекломассы вязкость возрастает, атомы не успевают занять нужное положение, возникает неуравновешенное состояние стекла, которое устраняется отжигом.