Технологии ближайшего будущего

Можно сказать совсем недавно, в 2003 году, на рынке мобильных устройств появились дисплеи, построенные по принципиально новой технологии. Новинкой стали так называемые OLED-дисплеи ( Organic Light Emitting Diodes ), основанные на органических светоизлучающих полупроводниках. Впервые подобные полупроводники были синтезированы фирмой Kodak более 15 лет назад – в 1987 году. На данный момент OLED-дисплеи по многим характеристикам уже сравнялись с LCD, а в чем-то даже их и превосходят. Правда, пока особо не впечатляет их непродолжительный срок работы – не более 8000 часов. Стоит заметить, что одним из важных преимуществ является то, что OLED-дисплеи не требуют задней подсветки, следовательно, толщина подобного экрана может быть заведомо меньше миллиметра. Плюс ко всему технология OLED настолько универсальна, что позволяет создавать даже гибкие дисплеи. Как пример была продемонстрирована кредитная карточка с индикатором текущего баланса банковского счета, построенном на OLED. В том, что новая технология составит полноценную конкуренцию LCD, уверены практически все крупные производители мониторов (Samsung, Sony, Pioneer, Sharp, Toshiba и другие). Не просто же так они инвестировали за последнее время сотни миллионов долларов в развитие новой перспективной отрасли!

Другая, вполне возможно, что перспективная технология называется E-ink (электронные чернила). Типичный дисплей E-ink состоит из двух слоев белого – верхнего и черного – нижнего. При подаче напряжения частицы нижнего слоя могут переходить в верхний, а затем, если потребуется, возвращаться на свое место. Основные козыри новой разработки: сверхнизкое электропотребление и сохранение последнего изображения даже после отключения питания. Недостатком же является то, что пока электронные чернила остаются лишь в черно-белом варианте.

Периферийные устройства персонального компьютера подключаются к его интерфейсам и предназначены для выполнения вспомогательных операций. Благодаря им компьютерная система приобретает гибкость и универсальность.

По назначению периферийные устройства можно подразделить на:

- устройства ввода данных;

- устройства вывода данных;

- устройства хранения данных;

- устройства обмена данными

Специальные клавиатуры. Клавиатура является основным устройством ввода данных. Специальные клавиатуры предназначены для повышения эффективности процесса ввода данных. Это достигается путем изменения формы клавиатуры, раскладки ее клавиш или метода подключения к системному блоку.

Специальные манипуляторы. Кроме обычной мыши существуют и другие типы манипуляторов, например: трекболы, пенмаусы, инфракрасные мыши.

Для ввода графической информации используют сканеры, графические планшеты (дигитайзеры) и цифровые фотокамеры.

В качестве устройств вывода данных, дополнительных к монитору, используют печатающие устройства (принтеры), позволяющие получать копии документов на бумаге или прозрачном носителе. По принципу действия различают матричные, лазерные, светодиодные и струйные принтеры.

Представление информации в компьютере,
единицы измерения информации

В ЭВМ применяется двоичная система счисления, т.е. все числа в компьютере представляются с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме.

Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование. Кодирование – это преобразование данных одного типа через данные другого типа. В ЭВМ применяется система двоичного кодирования, основанная на представлении данных последовательностью двух знаков: 1 и 0, которые называются двоичными цифрами (binary digit – сокращенно bit).

Таким образом, единицей информации в компьютере является один бит, т.е. двоичный разряд, который может принимать значение 0 или 1. Восемь последовательных бит составляют байт. В одном байте можно закодировать значение одного символа из 256 возможных (256 = 2 в степени 8). Более крупной единицей информации является килобайт (Кбайт), равный 1024 байтам (1024 = 2 в степени 10). Еще более крупные единицы измерения данных: мегабайт, гигабайт, терабайт (1 Мбайт = 1024 Кбайт; 1 Гбайт = 1024 Мбайт; 1 Тбайт = 1024 Гбайт).

Восемь двоичных разрядов могут закодировать 256 различных символов.

Существующий стандарт ASCII (8 – разрядная система кодирования) содержит две таблицы кодирования – базовую и расширенную. Первая таблица содержит 128 основных символов, в ней размещены коды символов английского алфавита, а во второй таблице кодирования содержатся 128 расширенных символов.

Так как в этот стандарт не входят символы национальных алфавитов других стран, то в каждой стране 128 кодов расширенных символов заменяются символами национального алфавита. В настоящее время существует множество таблиц кодировки символов, в которых 128 кодов расширенных символов заменены символами национального алфавита.

Так, например, кодировка символов русского языка Widows – 1251 используется для компьютеров, которые работают под ОС Windows. Другая кодировка для русского языка – это КОИ – 8, которая также широко используется в компьютерных сетях и российском секторе Интернет.

В настоящее время существует универсальная система UNICODE, основанная на 16 – разрядном кодировании символов. Эта 16 – разрядная система обеспечивает универсальные коды для 65536 различных символов, т.е. в этой таблице могут разместиться символы языков большинства стран мира.

Для кодирования графических данных применяется, например, такой метод кодирования как растр. Координаты точек и их свойства описываются с помощью целых чисел, которые кодируются с помощью двоичного кода. Так черно-белые графические объекты могут быть описаны комбинацией точек с 256 градациями серого цвета, т.е. для кодирования яркости любой точки достаточно 8 - разрядного двоичного числа.

Режим представления цветной графики в системе RGB с использованием 24 разрядов (по 8 разрядов для каждого из трех основных цветов) называется полноцветным. Для поноцветного режима в системе CMYK необходимо иметь 32 разряда (четыре цвета по 8 разрядов).

Наши рекомендации