Этапы разработки программных продуктов.

Этапы разработки программных продуктов.

Кодирование программы.

Написание технического задания

Разработка программ начинается с постановки технического задания. От того, насколько грамотным и точным оно будет, во многом зависит продуктивный результат. Требования к будущему ПО должны быть тщательно проанализированы и точно сформулированы. На этом этапе главная задача – собрать как можно больше информации, для этого стоит пообщаться и с руководством, и с теми, кто будет непосредственно пользоваться софтом. Итогом этого этапа должно стать техническое задание, детально описывающее действия программного продукта и ожидаемых от нее результатов.

Программирование— процесс и искусство создания компьютерных программ и/или программного обеспечения с помощью языков программирования. Программирование сочетает в себе элементы искусства, фундаментальных наук (прежде всего информатика и математика), инженерии, спорта и ремесла.

Кодирование программного обеспечения – собственно разработка программы или написание кода программы. Используемые технологии различны и у каждого специалиста в этой сфере есть свои предпочтения. На данном этапе осуществляется создание ПО с учетом выставленного технического задания.

Кодирование— процесс написания программного кода, скриптов, с целью реализации определённого алгоритма на определённом языке программирования.

Некоторые путают такие понятия, как программирование и непосредственно кодирование. Кодирование является лишь частью программирования, наряду с анализом, проектированием, компиляцией, тестированием и отладкой, сопровождением.

В узком смысле слова, программирование рассматривается как кодирование алгоритмов на заданном языке программирования. Под программированием также может пониматься разработка логической схемы для программируемой логической интегральной схемы, а также процесс записи информации в ПЗУ. В более широком смысле программирование — процесс создания программ, то есть разработка программного обеспечения.

Понятие кодирования и декодирования.

Использование электронно-вычислительных машин для переработки информации явилось коренным этапом в совершенствовании систем планирования и управления на всех уровнях народного хозяйства. Однако при этом, в отличие от обычных способов сбора и обработки информации, возникли проблемы преобразования информации в символы, понятные для машины. Неотъемлемым элементом этого процесса является кодирование информации. Кодом принято называть совокупность символов, соответствующих элементам информации или ее характеристикам. Сам процесс составления кода в виде совокупности символов или списка сокращений для соответствующих элементов и характеристик называется кодированием. В литературе термин код иногда заменяется идентичным ему термином шифр Цель кодирования состоит в том, чтобы представить информацию в более компактной и удобной форме для оперирования при передаче и обработке информации ; приспособить кодированную информацию к обработке на вычислительных устройствах ; обеспечить использование некоторого определенного метода поиска , сортировки и упорядочения информации.

Принципиальная схема обработки информации состоит из поиска, сортировки и упорядочения , в которой кодирование является частью операции ввода данных в виде входных кодов. В результате обработки информации получаются выходные коды, которые после их декодирования выдаются как результат проведенной обработке. Декодирование является операцией, обратной кодированию. Если при кодировании происходит преобразование информации в сигналы в виде определенного сочетания символов , соответствующих данному объекту или его характеристике , то при декодировании , наоборот , по заданному коду определяется соответствующий объект или его признаки. Например, в телефонном справочнике указан код , т.е. номер телефона , связанный с некоторым элементом (лицом или учреждением ). Операция декодирования состоит из набора кода номера телефона , который в виде сигналов поступает в АТС, где декодируется с помощью электрической схемы.

Процесс кодирования.

Процесс кодирования информации может производиться либо ручным , либо автоматическим способом. При ручном , неавтоматическом способе кодирования вручную отыскивается нужный код в предварительно составленном каталоге кодов и записывается в документе в виде цифровых или алфавитно-цифровых символов. Затем документ поступает в вычислительный центр , где оператор с помощью клавишного устройства перфорирует записанную информацию на перфокарте или перфоленте. Затем перфокарты или перфоленты вводятся в ЭВМ , информация кодируется в машинный (двоичный) код. Таким образом информация дважды кодируется вручную : при записи ее на документ и при переноски данных на машинные носители. При автоматическом способе кодирования человек производит запись на естественном языке в виде слов, цифр и общепринятых обозначений в документе , который читается специальным автоматом. Этот автомат предварительно кодирует документ и записывает все данные на магнитную ленту в двойном коде. Лента затем вводится в ЭВМ, где информация с помощью “машинного словаря “ снова кодируется в более короткий машинный код, удобный для ее поиска, сортировки и обработки. Ввод информации в ЭВМ в виде буквенно-цифрового текста на естественном языке и кодировании в машине требует хранения в памяти ЭВМ словаря, в котором каждому слову соответствует определенный код.По этому словарю машина сама кодирует текст. При этом отпадает необходимость в классификации и кодировании информации по ее смысловому содержанию, так как котируются сами слова, выражающие определенные характеристики предметов. Большое разнообразие технических характеристик и других данных, относящихся к производству и потреблению многочисленных видов продукции, не позволяет включить все необходимые данные для их производства в код продукции, так как этот код содержал бы большое число символов. Поэтому задача кодирования продукции заключается в том, чтобы иметь возможно более короткий код, по которому в памяти машины можно было бы найти подробную информацию о всех необходимых данных, относящихся к каждому изделию. Таким кодом является ключевой код.

Для каждого ключевого кода в памяти ЭВМ должен храниться массив данных, которые извлекаются из памяти и используются для решения различных задач. Этот массив информации должен быть единым для всех решаемых задач, например каталогом продукции, где в одном месте хранятся все необходимые данные о каждом предмете. Разделение его на ряд отдельных массивов, записанных, например, на различных участках магнитной ленты, нецелесообразно, так как это привело бы к повторению одной и той же информации и увеличению объема хранимой информации. Основное требование к ключевому коду - однозначный поиск ЭВМ признаков, относящихся к данному предмету, для которого ключевой код является адресом. Ключевой код может быть просто порядковым регистрационным номером и не нести какой-либо конкретной информации о продукции или, наоборот, может быть построен по определенной системе классификации и содержать конкретную информацию об основных признаках продукции, вполне ее определяющих. Второй способ кодирования более эффективен, так как регистрационный код не дает возможности осуществить предварительную сортировку информации по ее содержанию. Ключевой код позволяет производить сортировку карточек продукции по главным определяющим признакам. Детальная спецификация и ее остальные характеристики находятся в предварительно отсортированных карточках.

Виды кодов.

Код , символы которого соответствуют определенным предметам или характеристикам , называется прямым кодом . Если код непосредственно не содержит информацию о предмете или его признаках , а представляет адрес , указывающий местоположение информации , где содержится необходимые сведения , то он называется адресным кодом. Адресный код применяется для сокращения кода и быстрого поиска больших массивов информации. За единицу количества информации принимается 1 бит, т.е. один двоичный разряд (0 или 1). Буквы, десятичные цифры и другие символы внутри ЭВМ представляются в виде групп двоичных разрядов. Операция представления их в таком виде называется двоичным кодированием. Группа из n двоичных чисел позволяет закодировать 2n различных символов. Такая группа называется байтом.

Более крупной единицей информацией является машинное слово , представляющее собой последовательность символов , занимающих одну ячейку в памяти машины. В зависимости от ЭВМ машинного слова может колебаться в пределах— от 16 до 64 двоичных разрядов. машинное слово может быть командой , числом или буквенно-цифровой последовательностью. Обычно машинное слово используется как единое целое в ЭВМ , хотя на некоторых машинах допускается обработка частей машинного слова. Массив информации, содержащий 1024 машинных слова , называется страницей. Каждый отдельный блок памяти содержит обычно 16 и более страниц. Местоположение (адрес) слова в памяти определяется кодом адреса, содержащим номер блока, страницы и номера слова в этой странице. Для упорядочения информации о множестве объектов , а также для облегчения их поиска и сортировки по заданным признакам или характеристикам применяется классификация этого множества.

Классификация—это условное разбиение множества на ряд классов , подклассов и других группировок по принятой системе счисления и по заданным признакам и характеристикам.

Классификационный код—это такой код , в котором отдельными символами или группой символов представлен каждый из классифицируемых признаков или каждая конкретная характеристика предмета. Структура и число символов классификационного кода целиком определяется принятой классификацией множества , которая , в свою очередь , зависит от поставленных целей и задач. В классификационном коде каждый символ заключает в себе определенную информацию о конкретном признаке или характеристике предмета. В отличии от этого порядковый ,или регистрационный код , содержащий присвоенный данному предмету порядковый номер при его регистрации без учета его признаков и характеристик , может служить только адресом для поиска местоположения информации о данном предмете. Во многих случаях применяются смешанные коды , в которых имеется как классификационная часть , так и порядковые номера для списка классифицируемых предметов множества.

Тестирование.

Наличие ошибок – нормальное явление, реальную рабочую программу невозможно создать безошибочно с первой попытки. Во время тестирования наиболее важны: умение тестировщика найти в программе слабые места и умение программиста исправить ошибочную часть кода, не затронув при этом рабочие участки. Наиболее важные участки многократно проверяются различными методами.

Одной из самых запущенных тем в правилах безопасности, касающихся разработки программного обеспечения, является тема тестирования и документирования. Это очень важные компоненты разработки программного обеспечения, которые затрагивают и вопросы безопасности. Программа полного тестирования может помочь обнаружить проблемы до того, как они проявят себя в эксплуатируемом программном продукте. Кроме того, соответствующая документация необходима тем, кто проводит тестирование, чтобы было понятно, что нужно проверять. Поэтому, такие правила должны начинаться с требований по тестированию и документированию. Формулировка может выглядеть следующим образом.

Все собственные разработки должны быть протестированы и задокументированы перед сдачей их в промышленную эксплуатацию.

Важно отметить, что эта формулировка устанавливает требование, но не тип тестирования или формат документации. Данное предложение необходимо включить в правила для всего программного обеспечения и в процедуры.

Философия тестирования

Тестирование программного обеспечения охватывает целый ряд видов деятельности, весьма аналогичный последовательности процессов разработки программного обеспечения. Сюда входят постановка задачи для теста, проектирование, написание тестов, тестирование тестов и, наконец, выполнение тестов и изучение результатов тестирования. Решающую роль играет проектирование теста. Возможен целый спектр подходов к выработке философии, или стратегии проектирования тестов, изображенный на рис.2. Чтобы ориентироваться в стратегиях проектирования тестов, стоит рассмотреть два крайних подхода, находящихся на границах спектра. Следует отметить также, что многие из тех, кто работает в этой области, часто бросаются в одну или другую крайность.

Сторонник (или сторонница) подхода, соответствующего левой границе спектра, проектирует свои тесты, исследуя внешние спецификации или спецификации сопряжения программы или модуля, которые он тестирует. Программу он рассматривает как черный ящик. Позиция его такова: «Меня не интересует, как выглядит эта программа и выполнил ли я все команды или все пути. Я буду удовлетворен, если программа будет вести себя так, как указано в спецификациях». Его идеал — проверить все возможные комбинации и значения на входе.

Приверженец подхода, соответствующего другому концу спектра, проектирует свои тесты, изучая логику программы. Он начинает с того, что стремится подготовить достаточное число тестов для того, чтобы каждая команда была выполнена по крайней мере один раз. Если он немного более искушен, то проектирует тесты так, чтобы каждая команда условного перехода выполнялась в каждом направлении хотя бы раз. Его идеал — проверить каждый путь, каждую ветвь алгоритма. При этом его совсем (или почти совсем) не интересуют спецификации.

Ни одна из этих крайностей не является хорошей стратегией. Читатель, однако, уже, вероятно, заметил, что первая из них, а именно та, в соответствии с которой программа рассматривается как черный ящик, предпочтительней. К сожалению, она страдает тем недостатком, что совершенно неосуществима. Рассмотрим попытку тестирования тривиальной программы, получающей на входе три числа и вычисляющей их среднее арифметическое. Тестирование этой программы для всех значений входных данных невозможно. Даже для машины с относительно низкой точностью вычислений количество тестов исчислялось бы миллиардами. Даже имей мы вычислительную мощность, достаточную для выполнения всех тестов в разумное время, мы потратили бы на несколько порядков больше времени для того, чтобы эти тесты подготовить, а затем проверить. Такие программы, как системы реального времени, операционные системы и программы управления данными, которые сохраняют «память» о предыдущих входных данных, еще хуже. Нам потребовалось бы тестировать программу не только для каждого входного значения, но и для каждой последовательности, каждой комбинации входных данных. Поэтому исчерпывающее тестирование для всех входных данных любой разумной программы неосуществимо.

Эти рассуждения приводят ко второму фундаментальному принципу тестирования: тестирование — проблема в значительной степени экономическая. Поскольку исчерпывающее тестирование невозможно, мы должны ограничиться чем-то меньшим. Каждый тест должен давать максимальную отдачу по сравнению с нашими затратами. Эта отдача измеряется вероятностью тою, что тест выявит не обнаруженную прежде ошибку. Затраты измеряются временем и стоимостью подготовки, выполнения и проверки результатов теста. Считая, что затраты ограничены бюджетом и графиком, можно утверждать, что искусство тестирования, по существу, представляет собой искусство отбора тестов с максимальной отдачей. Более того, каждый тест должен быть представителем некоторого класса входных значений, так чтобы его правильное выполнение создавало у нас некоторую убежденность в том, что для определенного класса входных данных программа будет выполняться правильно. Это обычно требует некоторого знания алгоритма и структуры программы, и мы, таким образом, смещаемся к правому концу спектра.

Интеграция модулей.

Вторым по важности аспектом тестирования (после проектирования тестов) является последовательность слияния всех модулей в систему или программу. Эта сторона вопроса обычно не получает достаточного внимания и часто рассматривается слишком поздно. Выбор этой последовательности, однако, является одним из самых жизненно важных решении, принимаемых на этапе тестирования, поскольку он определяет форму, в которой записываются тесты, типы необходимых инструментов тестирования, последовательность программирования модулей, а также тщательность и экономичность всего этапа тестирования. По этой причине такое решение должно приниматься на уровне проекта в целом и на достаточно ранней его стадии.

Имеется большой выбор возможных подходов, которые могут быть использованы для слияния модулей в более крупные единицы. В большинстве своем они могут рассматриваться как варианты шести основных подходов, описанных в следующих шести разделах. Сразу же за ними идет раздел, где предложенные подходы сравниваются по их влиянию на надежность программного обеспечения.

Восходящее тестирование.

При восходящем подходе программа собирается и тестируется снизу вверх. Только модули самого нижнего уровня («терминальные» модули; модули, не вызывающие других модулей) тестируются изолированно, автономно. После того как тестирование этих модулей завершено, вызов их должен быть так же надежен, как вызов встроенной функции языка или оператор присваивания. Затем тестируются модули, непосредственно вызывающие уже проверенные. Эти модули более высокого уровня тестируются не автономно, а вместе с уже проверенными модулями более низкого уровня. Процесс повторяется до тех пор, пока не будет достигнута вершина. Здесь завершаются и тестирование модулей, и тестирование сопряжении программы.

При восходящем тестировании для каждого модуля необходим драйвер: нужно подавать тесты в соответствии с сопряжением тестируемого модуля. Одно из возможных решении — написать для каждого модуля небольшую ведущую программу. Тестовые данные представляются как «встроенные» непосредственно в эту программу переменные и структуры данных, и она многократно вызывает тестируемый модуль, с каждым вызовом передавая ему новые тестовые данные. Имеется и лучшее решение: воспользоваться программой тестирования модулей — это инструмент тестирования, позволяющий описывать тесты на специальном языке и избавляющий от необходимости писать драйверы.

Нисходящее тестирование.

Нисходящее тестирование (называемое также нисходящей разработкой не является полной противоположностью восходящему, но в первом приближении может рассматриваться как таковое, При нисходящем подходе программа собирается и тестируется сверху вниз. Изолировано тестируется только головной модуль. После того как тестирование этого модуля завершено, с ним соединяются (например, редактором связей) один за другим модули, непосредственно вызываемые им, и тестируется полученная комбинация. Процесс повторяется до тех пор, пока не будут собраны и проверены все модули.

При этом подходе немедленно возникает два вопроса: что делать, когда тестируемый модуль вызывает модуль более низкого уровня (которого в данный момент еще не существует), и как подаются тестовые данные. Ответ на первый вопрос состоит в том, что для имитации функций недостающих модулей программируются модули-заглушки», которые моделируют функции отсутствующих модулей. Фраза «просто напишите заглушку» часто встречается в описании этого подхода, но она способна ввести в заблуждение, поскольку задача написания заглушки» может оказаться трудной. Ведь заглушка редко сводится просто к оператору RETURN, поскольку вызывающий модуль обычно ожидает от нее выходных параметров. В таких случаях в заглушку встраивают фиксированные выходные данные, которые она всегда и возвращает. Это иногда оказывается неприемлемым, так как вызывающий модуль может рассчитывать, что результат вызова зависит от входных данных. Поэтому в некоторых случаях заглушка должна быть довольно изощренной, приближаясь по сложности к модулю, который она пытается моделировать.

Интересен и второй вопрос: в какой форме готовятся тестовые данные и как они передаются программе? Если бы головной модуль содержал все нужные операции ввода и вывода, ответ был бы прост:

Тесты пишутся в виде обычных для пользователей внешних данных и передаются программе через выделенные ей устройства ввода. Так, однако, случается редко. В хорошо спроектированной программе физические операции ввода-вывода выполняются на нижних уровнях структуры, поскольку физический ввод-вывод — абстракция довольно низкого уровня. Поэтому для того, чтобы решить проблему экономически эффективно, модули добавляются не в строго нисходящей последовательности (все модули одного горизонтального уровня, затем модули следующего уровня), а таким образом, чтобы обеспечить функционирование операций физического ввода-вывода как можно быстрее. Когда эта цель достигнута, нисходящее тестирование получает значительное преимущество: все дальнейшие тесты готовятся в той же форме, которая рассчитана на пользователя.

Остается еще один вопрос: в какой форме пишутся тесты до тех пор, пока не будет достигнута эта цель? Ответ: они включаются в некоторые из заглушек.

Нисходящий метод имеет как достоинства, так и недостатки по сравнению с восходящим. Самое значительное достоинство — в том, что этот метод совмещает тестирование модуля, тестирование сопряжении и частично тестирование внешних функций. С этим же связано другое его достоинство — когда модули ввода-вывода уже подключены, тесты можно готовить в удобном виде. Нисходящий подход выгоден также в том случае, когда есть сомнения относительно осуществимости программы в целом или если в проекте программы могут оказаться серьезные дефекты.

Преимуществом нисходящего подхода очень часто считают отсутствие необходимости в драйверах; вместо драйверов вам просто следует написать «заглушки». Как читатель сейчас уже, вероятно, понимает, это преимущество спорно.

Нисходящий метод тестирования имеет, к сожалению, некоторые недостатки. Основным из них является тот, что модуль редко тестируется досконально сразу после его подключения. Дело в том, что основательное тестирование некоторых модулей может потребовать крайне изощренных заглушек. Программист часто решает не тратить массу времени на их программирование, а вместо этого пишет простые заглушки и проверяет лишь часть условий в модуле. Он, конечно, собирается вернуться и закончить тестирование рассматриваемого модуля позже, когда уберет заглушки. Такой план тестирования определенно не лучшее решение, поскольку об отложенных условиях часто забывают.

Второй тонкий недостаток нисходящего подхода состоит в том, что он может породить веру в возможность начать программирование и тестирование верхнего уровня программы до того, как вся программа будет полностью спроектирована. Эта идея на первый взгляд кажется экономичной, но обычно дело обстоит совсем наоборот. Большинство опытных проектировщиков признает, что проектирование программы — процесс итеративный. Редко первый проект оказывается совершенным. Нормальный стиль проектирования структуры программы предполагает по окончании проектирования нижних уровней вернуться назад и подправить верхний уровень, внеся в него некоторые усовершенствования или исправляя ошибки, либо иногда даже выбросить проект и начать все сначала, потому что разработчик внезапно увидел лучший подход. Если же головная часть программы уже запрограммирована и оттестирована, то возникает серьезное сопротивление любым улучшениям ее структуры. В конечном итоге за счет таких улучшений обычно можно сэкономить больше, чем те несколько дней или недель, которые рассчитывает выиграть проектировщик, приступая к программированию слишком рано.

Метод большого скачка.

Вероятно, самый распространенный подход к интеграции модулей — метод «большого скачка». В соответствии с этим методом каждый модуль тестируется автономно. По окончании тестирования модулей они интегрируются в систему все сразу.

Метод большого скачка по сравнению с другими подходами имеет много недостатков и мало достоинств. Заглушки и драйверы необходимы для каждого модуля. Модули не интегрируются до самого последнего момента, а это означает, что в течение долгого времени серьезные ошибки в сопряжениях могут остаться необнаруженными. Метод большого скачка значительно усложняет отладку.

И все же большой скачок не всегда нежелателен. Если программа мала и хорошо спроектирована, он может оказаться приемлемым. Однако для крупных программ метод большого скачка обычно губителен.

Наличие документации

— это не требование обеспечения безопасности. Документация необходима для понимания персоналом того, каким образом эксплуатировать систему и как работает сама система. Эта документация необходима будущим разработчикам для изучения программных интерфейсов с целью определить, как эти интерфейсы должны функционировать в будущем. Знание интерфейсов максимально раскрывает суть работы системы программного обеспечения, оно необходимо при проведении анализа возможности возникновения в системе проблем и побочных эффектов, которые могут отразиться на информационной безопасности системы.

В документацию на систему должна входить не только пользовательская документация. В соответствии с требованиями разработчикам следует представить документацию на весь проект, на каждый программный модуль и их интерфейсы. Таким образом можно избежать дублирования в работе, а также задокументировать заложенные в программное обеспечение функции управления, на которые распространяются требования безопасности. Правило, в котором изложены эти рекомендации, может быть таким.

Процесс разработки программного обеспечения должен включать разработку пользовательской и технической документации, в которой описано, как функционирует программное обеспечение, как им управлять, его входные и выходные данные, интерфейсы с системой и другие компоненты, а также используемые средства обеспечения безопасности.

Внедрение и сопровождение разработанной программной системы

Во время внедрения ПО продолжается улучшаться интерфейс, в редких случаях выявляются ошибки. После того, как принято решение о том, что программный комплекс успешно внедрен осуществляется сопровождение. Во время сопровождения Компания, занимающаяся разработкой программ, своевременно усовершенствует программный продукт, обновляя его в соответствии с актуальными требованиями рынка и производства.

Согласованная работа на всех этапах – залог успеха программного продукта. Грамотно составленное техническое задание, обеспечивающее специалиста необходимой для работы информацией, повышает эффективность работы в несколько раз. Иммено поэтому, очень важно чтобы каждый из этапов выполнялся профессиональными разработчиками. Профессионализм исполнителей - залог успешной реализации задуманного проекта.

Замена версий и управление конфигурацией

Как было описано в предыдущих разделах, после проведенного тестирования и сдачи программного обеспечения в эксплуатацию может появиться необходимость выгрузить из системы программное обеспечение; способами, обеспечивающими выгрузку программного обеспечения являются замена версии или управление конфигурацией. С точки зрения безопасности, для внесения изменений в управление конфигурацией необходимо знать саму конфигурацию системы и ее компонентов. Зная, что должно быть в системе и в сети, администраторы смогут докладывать о нарушениях безопасности системы и искажениях в результатах работы программ в системе.

Некоторые положения управления конфигурацией повторены в правилах разработки программного обеспечения. Однако не все. что подходит для системы, может быть позаимствовано из правил разработки программного обеспечения. Эти положения включены сюда, чтобы подчеркнуть их важность для процесса разработки программного обеспечения, а также для того, чтобы обеспечить безопасность инсталляции операционной системы и даже разработанных ранее программных продуктов. В правилах безопасности необходимо регламентировать следующие виды работ: процедуры запроса на изменения, требования тестирования и процедуры инсталляции. Эту программу можно утвердить с помощью следующей формулировки.

Программа управления конфигурацией должна быть составлена для поддержания конфигурации всех находящихся в эксплуатации систем, включая операционные системы, заимствованное программное обеспечение и средства обеспечения безопасности.

Процедуры запросов на замену версий

Одним из ключевых моментов, отражающихся на безопасности, при замене версий и управлении конфигурацией, является возможность отслеживать изменения. В случае возникновения проблем администраторы, чтобы установить вызвавшую их причину, могут обследовать программное обеспечение системы и другие установленные программные модули. Первым шагом для обеспечения трассировки системы должна стать разработка правила, официально разрешающего изменение процедур управления для всех систем, находящихся в эксплуатации. В этом правиле предусматривается, что запросы на выполнение изменений в системе, а при необходимости и пересмотра правил безопасности, должны подаваться в письменном виде.

Для замены версий и управления конфигурацией должно быть официально разрешено изменение процедур управления для всех систем, находящихся в эксплуатации. Эти процедуры включают в себя подачу письменных запросов на внесение изменений, сопровождение исходных модулей разработанного и сданного в эксплуатацию программного обеспечения, а также проверку средств управления безопасностью.

В правилах не отражены ни конкретные методы выполнения этих работ, ни программное обеспечение, которое может быть использовано в работе. Еще раз напомним, что это относится к деталям реализации.

Управление конфигурацией и настройки защиты

Считается неизбежным, что установленное программное обеспечение имеет ошибки. Некоторые из этих ошибок могут доставить неприятности в работе. Другие могут отражаться на безопасности. Предметом споров между специалистами по защите и системными администраторами является то, каким образом восстанавливать программное обеспечение, в котором обнаружены проблемы с защитой. С одной стороны, необходимо решить проблему немедленно, чтобы предотвратить возникновение новых проблем. Однако, установка патчей, даже переданных поставщиком, может привести к непредвиденным результатам.

Крупные организации располагают возможностью создавать полигоны, чтобы тестировать данные изменения перед установкой их в реальную систему. Более мелкие организации не могут позволить себе такой роскоши и вынуждены проводить патчи на реальных системах. В любом случае, любая организация может включить эти детали в процедуры и разработать правила для таких ситуаций. Формулировка правил может выглядеть следующим образом.

В управление конфигурацией должны быть включены процедуры тестирования и установки исправленных средств защиты, полученных от разработчиков и поставщиков.

Управление конфигурацией и обновление

Однажды, работая в одной организации над такими правилами, управляющий спросил у автора книги о том, как разработать правила, которые заставят программистов переносить их обновления в исходники программ после обновления объектного пакета. Это был универсальный магазин, где бесцеремонные программисты тестировали и обновляли исполняемые модули программ, не обновляя исходики. С возникновением новых проблем разработчики забывали о том, что были обновлены исполняемые модули программ, и, когда они вносили очередное исправление в исходники, старые проблемы возникали снова.

Для многих организаций это не проблема, поскольку у них работают опытные специалисты, которые не допустят такого подхода к работе. Поскольку проблема является актуальной, в основном, для больших вычислительных систем, нет смысла заботиться об универсальных правилах для решения этой проблемы в любой организации. Чтобы в вашей организации такого не случилось, включите в правила простую формулировку.

Bсе обновления программного обеспечения собственной разработки должны проводиться на исходниках программ, а не на созданных на их базе исполняемых модулях.

Тестирование перед инсталляцией

Одна из опасностей, подстерегающих того, кто руководит внесением изменений в программное обеспечение, заключается в том, что он может разрешить инсталляцию до того, как проведено тестирование. Тестирование помогает выяснить, может ли программное обеспечение нормально функционировать в системе, и не появятся ли новые проблемы с безопасностью. Есть соблазн проводить патчи без предварительного тестирования, особенно патчи по безопасности, переданные поставщиком программного обеспечения.

Правилами должно быть установлено требование проводить тестирование и обновление этих патчей независимо от того, поступают они от поставщика или являются собственной разработкой организации. Правила не должны регламентировать выполнение тестирования обязательно на специальных системах, но должны устанавливать условия тестирования Это позволит организации с ограниченными ресурсами разработать подходящую для ее системы методику тестирования. Хорошая общая формулировка правил выглядит следующим образом.

Все программное обеспечение должно тестироваться и утверждаться перед его использованием в производственной среде. Это правило распространяется как на программное обеспечение и обновления, предоставляемые поставщиком, так и на программное обеспечение и обновления, разработанные самой организацией.

Создание документации пользователя

Документация на программное обеспечение — это документы, сопровождающие некоторое программное обеспечение (ПО) — программу или программный продукт. Эти документы описывают то, как работает программа и/или то, как её использовать.

Документирование — это важная часть в разработке программного обеспечения, но часто ей уделяется недостаточно внимания.

Типы документации

Существует четыре основных типа документации на ПО:

архитектурная/проектная— обзор программного обеспечения, включающий описание рабочей среды и принципов, которые должны быть использованы при создании ПО

техническая — документация на код, алгоритмы, интерфейсы, API

пользовательская— руководства для конечных пользователей, администраторов системы и другого персонала

маркетинговая

Техническая документация

Это именно то, что подразумевают под термином документация большинство программистов. При создании программы, одного лишь кода, как правило, недостаточно. Должен быть предоставлен некоторый текст, описывающий различные аспекты того, что именно делает код. Такая документация часто включается непосредственно в исходный код или предоставляется вместе с ним.

Подобная документация имеет сильно выраженный технических характер и в основном используется для определения и описания API, структур данных и алгоритмов.

Часто при составлении технической документации используются автоматизированные средства — генераторы документации, такие как Doxygen, javadoc, NDoc и другие. Они получают информацию из специальным образом оформленных комментариев в исходном коде, и создают справочн

Наши рекомендации