Субтрактивный синтез. CMYK

Цифровое представление цвета

Выполнила:

Студентка 1 курса

Группы 652

Кузнецова В.А

Проверил:

Михайлов В.А.

Санкт – Петербург

Содержание

Введение…………………………………………………………………………..3

СОЖЕРЖАНИЕ

1. Как видит человеческий глаз……………………………………………..4

2. Аддитивная модель. RGB…………………………………………………5

3. Субтрактивная модель. CMYK…………………………………………...6

4. Сolorcub (цветовой куб)…………………………………………………...7

5. Хранение изображения……………………………………………………8

6. Определение цветов……………………………………………………….9

Заключение ………………………………………………………………………10

Источники информации…………………………………………………………11

Введение

Цвет может нести политический, религиозный и культурный подтекст, влиять на нас эмоционально и физически. Еще он может улучшать память, влиять на решение купить что-то, выражать мнение, рассказывать истории.

Цвет — это очень субъективное понятие. В природе существуют световые волны разной частоты. Исследования показали, что определённый диапазон частот (видимый свет) воспринимается человеческим глазом. Но воспринимается не каждая волна по отдельности, а их совокупность.

Все больше и больше людей открывают для себя рынок цифрового изображения. Цифровые камеры, цветные принтеры и сканеры становятся все больше дешевеют и таким образом, становятся доступными для все большего числа пользователей. Вместе с этой революцией в использовании цвета появилась и необходимость понять, что же такое цифровой цвет и разобраться в его особенностях.

Как видит человеческий глаз

В человеческом глазе присутствуют два вида рецепторов: палочки и колбочки. Палочки реагируют на оттенки серого, а с помощью колбочек мозг способен воспринимать спектр цветов. Существует три типа колбочек: первые реагируют на красно-оранжевый цвет, вторые - на зеленый, а третьи - на сине-фиолетовый. Когда стимулируется только один тип колбочек, мозг видит только один соответствующий цвет. Таким образом, если стимулируются наши "зеленые" колбочки - мы видим "зеленый" цвет. Если красно-оранжевые - "красный". Если одновременно стимулировать зеленые и красно-оранжевые колбочки, мы видим желтый цвет. Глаз не способен отличить настоящий желтый цвет от некоей комбинации красного и зеленого. То же самое касается нашего восприятия таких цветов как циан, фуксин и прочих межспектральных цветов.

Из-за такого физиологического свойства нашего глаза, мы можем его "обмануть", представив полную гамму видимых цветов путем пропорционального смешивания всего лишь трех: красного, зеленого и синего.

Аддитивная модель. RGB

Есть три основных частоты, «смешивая» которые можно получить почти все воспринимаемые человеком цвета. Если эти частоты излучаются отдельно (например, лазером), то воспринимаются они как красный, зелёный и синий цвета. Отсюда родилась RGB модель. Она очень удобна для технической реализации в устройствах, которые излучают свет (мониторы и проекторы). Так как там из одной точки можно «посветить» тремя цветами разной интенсивности и таким образом, используя только 3 основных цвета, получать почти весь видимый спектр.

Надо понимать разницу между возможностью контролировать свет излучаемый и поглощаемый.

Если на белую стену посветить красным, зелёным и синим прожектором, то на пересечении областей мы получим участки, которые «излучают» сразу два цвета: красный + зелёный = yellow, зелёный + синий = cyan, синий + красный = magenta. В данном случае мы контролируем излучаемый свет, тем самым добавляя основные цвета друг к другу в нужных пропорциях.

Аддитивная модель - добавка цветов путем смешивания ряда различных светлых цветов, с оттенками красного, зеленого и синего является наиболее распространенным основные цвета, используемые в аддитивной цветовой системе.

Аддитивное смешение используется в компьютерных мониторах или телевизионных экранах, цветное изображение на которых получается из красных, зеленых и синих точек.

Субтрактивный синтез. CMYK

Субтрактивный синтез — это метод синтеза, основанный на вычитании элементов друг из друга.

Получение цвета путём вычитания из спектрально-равномерного белого света отдельных спектральных составляющих. Заключительная стадия процесса цветовоспроизведения по субтрактивному методу.

Цвеетовоспроизведение(в полиграфии, цветной фотографии, цветном телевидении и т. д.) — процесс передачи цветов объекта в его цветном изображении.

CMYK - четырёхцветная автотипия (CMYK: Cyan, Magenta, Yellow, Key color) — субтрактивная схема формирования цвета, используемая прежде всего в полиграфии для стандартной традиционной печати. Схема CMYK обладает сравнительно с RGB меньшим цветовым охватом.

По-русски эти цвета часто называют голубым, пурпурным и жёлтым, хотя первый точнее называть сине-зелёным, а маджента — лишь часть пурпурного спектра. Печать четырьмя красками, соответствующими CMYK, также называют печатью традиционными красками.

Colorcube (цветной куб)

COLORCUBE - это трехмерная модель, с помощью которой можно изучать или преподавать теорию цифрового цвета. Это элегантное представление цветов ликвидирует пропасть между аддитивной и субтрактивной системой цветов, а также определяет методы, с помощью которых цвета хранятся, обрабатываются и воспроизводятся в компьютерной технологии.

Возможность представить все существующие цвета в виде трехмерной цветовой гаммы и видеть их взаимосвязь друг с другом дает огромное преимущество при работе с цветом. Хотя уже и существуют несколько компьютерных моделей, отображающих теоретически цветовую гамму, модель COLORCUBE первая в своем роде физическая модель, в которой видимы все внутренние цвета.

Человеческий глаз способен видеть более 16 миллионов оттенков цветов. Ключевое свойство COLORCUBE состоит в том, что сначала определяются внешние точки куба, а затем определяются цвета и оттенки между этими ключевыми точками. Таким образом, определяя крайние границы цветовой гаммы, мы получаем также возможность видеть и промежуточные цвета. Задавая общее количество требуемых цветов, мы можем генерировать кубы любой плотности. Например, COLORCUBE который определяет все воспроизводимые цвета будет иметь в каждой грани 256 кубиков, то есть состоять из 16,777,216 кубиков.

Хранение изображения

Все цифровые устройства работы с цветом хранят, обрабатывают и воспроизводят цвет и цветные изображения с помощью значений RGB. Для того чтобы сохранить цифровое изображение, его сначала требуется разбить на сетку мелких пикселей (точек). Каждый пиксель замеряется на количество в нем красного, зеленого и синего цветов. Затем все изображение в целом записывается пиксель за пикселем. Для хранения изображения площадью 3 квадратных дюйма с разрешением 150 точек на дюйм требуется 202.500 пикселей или 607.500 байт.

Часто теоретическую модель, описывающую принцип хранения цветов в компьютере, представляют в виде куба. Этот метод прекрасно зарекомендовал себя, позволяя с легкостью переключаться между различными цветовыми моделями.

Фундаментальное отличие COLORCUBE от всех других моделей состоит в том, что куб описывает цвета в цветовом пространстве, основываясь на входных параметрах (на количестве основных пигментных цветов, используемых для создания смешанного цвета). Другие же модели базируются на измерении выходных параметров (т.е. на том, как выглядит результирующий цвет). Система цветов, основанная на входных параметрах, значительно облегчает решение вопросов с наименованием цветов, и с воспроизведением, выводом, калибровкой, обработкой и преобразованием в другие цветовые схемы.

Целью цветовой калибровки является измерение и / или настроить реакцию цвета устройства (вход или выход) в известное состояние. В Международный консорциум по цвету (ICC) терминов, это является основанием для дополнительной цветовой характеристики устройства.

Проблемы, возникающие при калибрации и определении цветов, вызваны тем, что все эти системы используют различные диапазоны видимых цветов. Для того, чтобы эффективно определять цветовые соответствия между различными цветовыми системами, необходимо проводить сложные математические вычисления. Если эти вычисления не сделать достаточно точными, цвета конечного изображения не будут соответствовать оригиналу.

Определение цветов

В настоящее время для правильного определения соответствия цветов производятся спектральные замеры каждого из устройств, участвующих в процессе, при этом в одинаковых условиях освещенности. После этого цвета переводятся в единое поле системы CIE.

В таких популярных программах, как Corel Photo Paint и Hewlett Packard Scanning имеются средства с двухмерным интерфейсом калибрации цвета. Эти интерфейсы сложны в использовании, не дают полной информации и требуют глубоких знаний о цвете.

Если трехмерная модель цвета получит признание и будет использована в интерфейсах программ, это будет значительный шаг в их улучшении. В трехмерном пространстве проще отобразить различные цветовые системы и их соответствия, а также весь набор теоретически видимых цветов.

Заключение

По мере того, как системы работы с цифровым цветом становятся все менее дорогими, и число их растет, увеличивается и спрос на эффективное обучение пользователей работе с этими продуктами. Для того, чтобы пользователи лучше понимали и разбирались в сложных проблемах с цветом, они должны по меньшей мере знать основы цифрового цвета.

В эпоху, когда искусство, наука и другие отрасли, работающие с цветом, переходят в цифровую ипостась, необходимо придти к единому пониманию цвета.

Источники информации

1. https://ru.wikibooks.org

2. http://www.tiflocomp.ru

3. http://webmascon.com

Наши рекомендации