Участие различных типов мотонейронов в собственных рефлексах мышц

Характеристики активности мотонейронов при собственных рефлексах мышц, естественно, существенно отличаются в зависимости от того, идет ли речь о фазном или тоническом рефлексе. В случае фазного (сухожильного) рефлекса мотонейроны посылают к мышцам короткий залп импульсов, который вызывает быстрое вздрагивание мышцы. В случае тонического рефлекса растяжения мотонейроны дают непрерывный разряд, который длится все время, пока поддерживается тоническое сокращение.

Частота разрядов мотонейронов во время рефлекса растяжения сравнительно невелика и составляет 10-20 импульсов в секунду. Даже при значительном усилении растяжения мышцы не удается существенно повысить эту частоту. Более того, при этом часто наблюдается аутогенное торможение разряда. Эффективная стабилизация частоты разряда мотонейрона на сравнительно низкой величине является важным свойством двигательных элементов нервной системы, которое проявляется не только при рефлексах растяжения, но и при всех других рефлексах тонического характера. Поэтому необходимо остановиться на возможном ее функциональном значении и механизм мах ее осуществления.

Низкая частота эфферентного разряда мотонейронов является, по-видимому, наиболее экономичным способом их деятельности.

Дело в том, что одиночное мышечное сокращение длится довольно долго (много десятков миллисекунд). Следует учитывать еще и то обстоятельство, что при напряжении мышцы, содержащей огромное количество мышечных волокон, никогда не происходит одновременное их возбуждение. Активность различных мышечных волокон в какой-то степени чередуется, за счет этого мышца меньше утомляется. Поэтому для поддержания непрерывного мышечного напряжения не нужна высокая частота разряда двигательной нервной клетки, Для этого достаточна частота импульсации, не превышающая десяти импульсов в секунду. Мотонейроны имеют механизмы, которые стабилизируют их разряд именно на такой частоте и предотвращают возникновение импульсации слишком высокой частоты, которая могла бы привести к нарушению мышечной деятельности.

Таким стабилизирующим механизмом является, во-первых, развитие в соме мотонейрона описанной уже выше длительной следовой гиперполяризации после генерации импульса. Длительность ее достигает примерно 100 мс, и в период ее развития новое синаптическое действие будет, естественно, ослаблено. Этот механизм сам по себе должен способствовать стабилизации частоты разряда мота- нейрона на уровне около 10 импульсов в секунду.

Кроме внутреннего механизма стабилизации, у мотонейрона есть еще и второй, внешний механизм, который работает в том же направлении. Этот внешний механизм представлен короткой цепочкой обратной связи, через которую мотонейрон сам себя тормозит в том случае, когда он посылает разряд в аксон. Аксон мотонейрона, направляющийся в соответствующую мышцу, еще в пределах мозга дает небольшое количество разветвлений, возвращающихся назад в серое вещество и заканчивающихся синапсами на уже упоминавшихся особых промежуточных клетках Реншоу. Аксоны этих клеток заканчиваются на мотонейронах; характерной особенностью их деятельности является то, что они вызывают в мотонейронах появление тормозящего постсинаптического потенциала.

Общая схема деятельности такой цепочки выглядит следующим образом. Когда мотонейрон посылает импульс к мышце, последний одновременно по аксонным коллатералям вызывает синаптическое возбуждение клеток Реншоу. Следоваягиперполяризацня в клетках Реншоу отсутствует, и поэтому они могут на одном синаптическом потенциале генерировать целую пачку импульсов с очень высокой частотой - до 1500 импульсов в секунду. Каждый из этих импульсов, приходя к мотонейронам, вызывает в них тормозящую реакцию, которая суммируется до тех пор, пока длится разряд клетки Реншоу. Поэтому общая длительность торможения после одиночного импульса в аксонной коллатерали достигает примерно 100 мс. Возвратное торможение складывается со следовой гиперполяризацией и еще больше способствует удерживанию разряда мотонейрона на низкой частоте.

Поскольку в процессе эволюции возникли такие эффективные дублирующие друг друга механизмы стабилизации разряда мотонейрона, то очевидно, что последняя имеет существенное значение для нормального осуществления двигательного акта.

Собственные рефлексы неодинаковы у мышц различных типов. Они значительно более четко проявляются у разгибательных мышц, чем у сгибательных. Это связано с различным функциональным значением этих двух подгрупп скелетной мускулатуры. Для разгиба- тельных мышц более существенным является постоянное тоническое напряжение, так как их деятельность направлена на постоянное противодействие силе земного притяжения и поддержания определенной позы организма. Поскольку собственные рефлексы мышц представляют собой в основном тонические рефлексы, то они являются одним из существенных компонентов механизма поддержания такого напряжения разгибателей.

Из этого общего правила есть исключения. Некоторые группы сгибательных мышц в связи с особенностями образа жизни животного также должны часто находиться в состоянии длительного тонического напряжения. К таким мышцам относятся, например, сгиба- тельные мышцы верхней конечности у приматов. Эта особенность их функции связана с происхождением приматов, а именно, первоначальной жизнью на деревьях и необходимостью висеть на ветвях, требующими тонического напряжения именно сгибателей. Соответственно тонические сгибательные собственные рефлексы мышц на верхних конечностях приматов, в том числе и человека, выражены хорошо.

Среди разгибательных мышц также существует определенная дифференциация в отношении выраженности собственных рефлексов. У предрасположенных к длительному поддержанию сокращения красных мышц они более интенсивны и длительны, чем у “быстрых” белых, что способствует тоническому характеру их деятельности.

Примером дифференциации мышц на эти группы является трехглавая мышца голени. Две ее головки образуют икроножную мышцу (m.gastrocnemius), под которой лежит третья головка -камбаловидная мышца (m.soleus). Обе головки икроножной мышцы состоят из белых мышечных волокон, лежащая под ними плоская m.soleus - красная; собственные рефлексы у нее существенно отличаются от таковых в икроножной мышце.

В эфферентном звене проприоцептивных рефлексов есть еще одна очень важная особенность. Эфферентный разряд, направляющийся в мышцу из мотонейронов, вовлекает в деятельность не только обычные белые или красные мышечные волокнам но и интрафузальные волокна, которые иннервируются гамма - мотонейронами. Сокращение интрафузальных волокон не приводит к заметной двигательной реакции, так как их мало и они не могут вызвать укорочения мышцы.

Однако это сокращение сопровождается очень существенными изменениями деятельности самих мышечных рецепторов, а именно, резким повышением частоты идущего от них афферентного разряда. На одно и то же растяжение мышцы ее рецепторы теперь отвечают более интенсивно, чем в том случае, когда система гамма - волокон не активируется. Таким образом, собственный рефлекс мышцы, начинаясь от ее рецепторов и замыкаясь через спинной мозг, вызывает не только обычную ответную реакцию, но и изменения в тех рецепторах, от которых он начался. Такая замкнутая система нервных связей сама себя поддерживает и может быть обозначена как система положительной обратной связи.

Функциональное значение гамма - системы не исчерпывается только созданием положительных обратных влияний на мотонейроны. Гамма - мотонейроны, как показывают многие исследования, могут синаптически активироваться импульсами из ряда других источников, в том числе, поступающими в спинной мозг из вышерасположенных центров. При некоторых повреждениях ствола головного мозга происходит существенное увеличение активности гамма - мотонейронов, это увеличение активности, вызывая сокращение интрафузальных волокон, резко увеличивает афферентные разряды в мышечных рецепторах. Соответственно увеличивается рефлекторный тонус мышц - развивается так называемая мышечная ригидность.

Ранее предполагалось, что мышечная ригидность связана с интенсивным тоническим сокращением обычных мышечных волокон, вызываемым прямыми афферентными или нисходящими влияниями на альфа - мотонейроны. Однако во многих случаях основой мышечной ригидности является, вероятно, усиление активности гамма - мотонейронов и повышение разряда мышечных рецепторов, которые уже вторично через механизм собственных рефлексов усиливают мышечный тонус. Поэтому сейчас нередко употребляется термин гамма - ригидность, который подчеркивает роль системы гамма -мотонейронов в ее возникновении.

Все сказанное выше в отношении механизма проприоцептивных рефлексов мышц касается млекопитающих. У других классов позвоночных животных собственные рефлексы мышц могут значительно отличаться от таковых у млекопитающих. Система гамма - мотонейронов, регулирующих деятельность проприоцепторов, и играющая столь существенную роль в собственных рефлексах, является сравнительно новым эволюционным приобретением. У амфибий, например, в спинном мозге есть большие и маленькие мотонейроны н соответственно альфа- и гамма - волокна. Однако функциональное значение гамма - волокон у них совершенно другое, чем у млекопитающих. У амфибий существует два резко различных типа скелетных мышечных волокон - тетанические и тонические. Тетанические мышечные волокна, как и все скелетные мышечные волокна высших животных, способны генерировать распространяющийся потенциал действия и обычную быстропротекающую сократительную реакцию. Тонические же волокна не обладают механизмом генерации распространяющегося импульса. Они отвечают на нервный импульс, приходящий к ним через синаптические окончания, очень медленным сокращением - контрактурой. Контрактура вызывается непосредственно постсинаптическим потенциалом, без появления распространяющегося импульса. Тетанические скелетные мышечные волокна у амфибий иннервируются системой альфа - мотонейронов, а тонические - системой медленнопроводящих гамма - мотонейронов. Таким образом, быстрое сокращение и тоническое напряжение осуществляется у них двумя различными двигательными системами с различной иннервацией.

В процессе эволюции позвоночных животных обе функции - быстрое сокращение и тоническое напряжение - перешли к системе альфа - мотонейронов, и характер рефлекторного ответа связанных с ними мышечных волокон стал целиком определяться характером нервной импульсации. Система же мелких медленнопроводящих мотонейронов превратилась в систему регуляции функций проприоцепторов. Она потеряла непосредственную двигательную функцию и стала механизмом контроля сенсорного аппарата.

Наши рекомендации