В организме человека бром, в виде бромид-ионов, участвует в регуляции деятельности щитовидной железы, так как является конкурентным ингибитором иода.

Как избыток, так и недостаток брома в организме имеют весьма неприятные последствия. Еще Павлов первым определил влияние этого элемента на живых существ. Опыты на животных доказали, что длительное недополучение ионов брома приводит к: нарушению работы нервной системы; расстройству половой функции; выкидышам и бесплодию; уменьшению роста; снижению уровня гемоглобина; бессоннице и так далее. Избыточное накапливание в органах и тканях приводит к подавлению работы головного и спинного мозга, различным наружным заболеваниям кожи.

Переходные металлы.

Переходные металлы (переходные элементы) - элементы побочных подгрупп Периодической системы химических элементов Д. И. Менделеева, в атомах которых появляются электроны на d- и f-орбиталях. В общем виде электронное строение переходных элементов можно представить следующим образом: ( n − 1 ) d x n s y {\displaystyle (n-1)d^{x}ns^{y}} ( n − 1 ) dˣnsʸ. На ns-орбитали содержится один или два электрона, остальные валентные электроны находятся на ( n − 1 ) d - орбитали. Поскольку число валентных электронов заметно меньше числа орбиталей, то простые вещества, образованные переходными элементами, являются металлами.

Все переходные элементы имеют следующие общие свойства:

Небольшие значения электроотрицательности.

Переменные степени окисления. Почти для всех d-элементов, в атомах которых на внешнем ns-подуровне находятся 2 валентных электрона, известна степень окисления +2.

Начиная с d-элементов III группы Периодической системы химических элементов Д. И. Менделеева, элементы в низшей степени окисления образуют соединения, которые проявляют основные свойства, в высшей — кислотные, в промежуточной — амфотерные. Например:

Формула соединения Характер соединения
Mn(OH)2 Основание средней силы
Mn(OH)3 Слабое основание
Mn(OH)4 Амфотерный гидроксид
H2MnO4 Сильная кислота
HMnO4 Очень сильная кислота

Для всех переходных элементов характерно образование комплексных соединений.

Электроотрицательность.

Относительная электроотрицательность - фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары, то есть способность атомов оттягивать к себе электроны других атомов. Самая высокая степень электроотрицательности у галогенов и сильных окислителей (p-элементов, F, O, N, Cl), а низкая - у активных металлов (s-элементов I группы).

Описание

Первая и широко известная (самая распространённая) шкала относительных атомных электроотрицательностей Полинга охватывает значения от 0,7 для атомов франция до 4,0 для атомов фтора. Фтор - наиболее электроотрицательный элемент, за ним следует кислород (3,5) и далее азот и хлор (щелочные и щёлочноземельные металлы имеют наименьшие значения электроотрицательности, лежащие в интервале 0,7 - 1,2, а галогены - наибольшие значения, находящиеся в интервале 4,0 - 2,5. Электроотрицательность типичных неметаллов находится в середине общего интервала значений и, как правило, близка к 2 или немного больше 2. Электроотрицательность водорода принята равной 2,1. Для большинства переходных металлов значения электроотрицательности лежат в интервале 1,5 - 2,0. Близки к 2,0 значения электроотрицательностей тяжёлых элементов главных подгрупп. Существует также несколько других шкал электроотрицательности, в основу которых положены разные свойства веществ. Но относительное расположение элементов в них примерно одинаково.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

χ = 1 2 ( J 1 A + ϵ A ) {\displaystyle \chi ={\frac {1}{2}}\left(J_{1}^{A}+\epsilon _{A}\right)} где J1A и εA — соответственно энергия ионизации атома и его сродство к электрону.

В настоящее время для определения электроотрицательностей атомов существует много различных методов, результаты которых хорошо согласуются друг с другом, за исключением относительно небольших различий, и во всяком случае внутренне непротиворечивы.
Помимо шкалы Малликена, описанной выше, существует более 20-ти различных других шкал электроотрицательности (в основу расчёта значений которых положены разные свойства веществ), среди которых шкала Л. Полинга (основана на энергии связи при образовании сложного вещества из простых), шкала Олреда-Рохова (основана на электростатической силе, действующей на внешний электрон) и др.

Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, типа соединения, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, то есть от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности (полярности), силовую постоянную и т. д.

В период бурного развития квантовой химии как средства описания молекулярных образований (середина и вторая половина 20 века) плодотворным оказался подход Л. Полинга, который в числе прочих исследований ввел собственную шкалу электроотрицательностей, в которой из «стандартных» элементов максимальную имеет фтор χ ( F ) ≈ 4 , 1 {\displaystyle {\chi }({\rm {{F})~{\approx }~4,1}}}, а минимальную - франций χ ( F r ) ≈ 0 , 7 {\displaystyle {\chi }({\rm {{Fr})~{\approx }~0,7}}}. Степень ионности связи, то есть вклад структуры, при которой более электроотрицательный атом полностью «забирает» себе валентные электроны, в общую резонансную «картину», в этой теории ω = 1 − exp ⁡ ( − ( Δ χ ) 2 4 ) {\displaystyle {\omega }=1-{\exp {\left(-{\frac {({\Delta }{\chi })^{2}}{4}}\right)}}} одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы. Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.

Наши рекомендации