Развитие важнейших функциональных систем мозга. учение о системогенезе

Функциональная система есть объединение различных нервных элементов, участвующих в обеспечении какой-либо функции. Она является важнейшим саморегулирующимся механизмом мозга. Для оценки уровня индивидуального развития нервной системы (онтогенетического уровня) имеет значение не столько оценка степени анатомической зрелости тех или иных элементов, сколько оценка их способности регулировать определенную функцию. Отсюда следует, что процессы онтогенеза можно понять глубоко с позиций системогенеза, т.е. не изолированного, а посистемного развития нервных элементов. Основы учения о системогенезе были заложены выдающимся советским физиологом П. К.Анохиным.

Понятие “функциональная система” позволяет объяснить некоторые закономерности становления нервно-психических функций в онтогенезе. Важное значение имеет тот факт, что отдельные компоненты функциональной системы формируются примерно в одно и то же время, хотя и могут принадлежать к филогенетически разным уровням. Вследствие этого в процессе эмбрионального развития наряду с общей последовательностью образования различных отделов нервной системы (по принципу — сначала эволюционно более древние, а затем более молодые) наблюдаются и отклонения от последовательности, а именно посистемное созревание нервных элементов — системогенез. В первую очередь формируются те функциональные системы, которые имеют первостепенное жизненное значение. В функциональную систему могут объединяться разные в эволюционном плане уровни; поэтому в пределах одного и того же уровня можно наблюдать разные степени созревания отдельных элементов в зависимости от их вовлеченности в функциональную систему.

Принцип неодновременности, гетерохронности можно проиллюстрировать многими примерами. Например, неравномерно созревают отдельные волокна лицевого нерва, иннервирующие мышцы лица. У новорожденных наиболее готовы к функционированию те нервные клетки и их волокна, которые имеют отношение к акту сосания, тогда как другие волокна лицевого нерва еще не миелинизированы. Другим примером системогенеза может быть организация у новорожденных механизма хватательного рефлекса. Уже на 4—6-м месяце внутриутробного развития человеческого эмбриона из всех нервов руки наиболее полно созревают те, которые обеспечивают сокращение сгибателей пальцев. Кроме того, к этому периоду дифференцируются клетки передних рогов спинного мозга на уровне восьмого шейного сегмента, где расположены двигательные нейроны сгибателей пальцев кисти, формируются связи с вышестоящими регулирующими отделами нервной системы.

Установлено несколько важнейших принципов системогенеза. Первый принцип заключается в том, что функциональные системы формируются не одновременно, а по мере жизненной необходимости, связанной с условиями существования организма. Так, новорожденный ребенок наделен готовыми системами, обеспечивающими регуляцию наиболее важных процессов — сосания, глотания, дыхания. Представители других видов к моменту рождения располагают гораздо большим количеством готовых функциональных систем. В частности, детеныш кенгуру способен самостоятельно забираться в сумку матери, а только что вылупившийся из яйца гусенок следовать за матерью или любым движущимся предметом.

Несмотря на кажущуюся скудость врожденных механизмов реагирования, у новорожденного ребенка обнаруживается весьма тонкая координация различных регулирующих воздействий нервной системы. Например, возможно одновременное глотание и дыхание, — эта способность часто утрачивается впоследствии. Наряду с этим имеет место значительное несовершенство зрительных, слуховых, двигательных реакций. В неодновременности формирования реагирующих механизмов заключается принцип гетерохронности созревания отделов нервной системы.

Второй принцип системогенеза состоит в межсистемной и внутрисистемной гетерохронности. Межсистемная гетерохронность — неодновременные закладка и формирование разных функциональных систем (сосание и зрительный контроль). Внутрисистемная гетерохронность — постепенное усложнение формирующейся функции. Первоначально созревают элементы, дающие возможность минимального обеспечения функции; затем постепенно вступают в строй и другие отделы данной системы, позволяющие реагировать на внешние и внутренние воздействия более тонко. Например, у ребенка до 3 месяцев сосательный рефлекс вызывается очень легко, любым прикосновением к щекам, подбородку, но довольно часто наблюдаются поперхивание, заглатывание воздуха. К 3 месяцам сосательные движения становятся более дифференцированными, вызываются в основном раздражением губ; поперхивание встречается редко. Аналогичная картина отмечается в развитии хватательных функций руки. В первые месяцы жизни любое раздражение ладони вызывает сжимание кисти в кулачок. Впоследствии схватывание становится более избирательным, возникает сопротивление большого пальца остальным. Внутрисистемная гетерохрония обусловлена не только дозреванием элементов данной функциональной системы, но и установлением межсистемных связей. Например, автоматическое схватывание усложняется по своей двигательной организации, но в то же время начинает все более явственно обнаруживаться зрительный контроль над действием руки (зрительно-моторная координация).

Учение о системогенезе позволяет понять причины строгой последовательности и преемственности этапов нервно-психического развития ребенка. Например, удерживание головы предшествует сидению, сидение — стоянию, стояние — ходьбе. Способность удерживать голову является важной предпосылкой для контроля за положением тела. Это достигается благодаря совершенствованию органа равновесия и за счет усложняющегося зрительного контроля

Следует учитывать, что многие функциональные системы сами состоят из ряда подсистем, формирующихся неодновременно и постепенно усложняющих свои взаимодействия. Так, в комплекс управления движениями входят системы регуляции мышечного тонуса, равновесия тела, координации сокращений мышц — антагонистов и синергистов (т.е. действующих противоположно и содружественно). Кроме того, для любого двигательного акта необходима целостная программа — “двигательная задача”, подразумевающая смену одних движений другими, контроль за выполнением намеченного действия. Чтобы совершить обычный шаг человеку необходимо перенести тяжесть тела на одну ногу и, сохраняя при этом равновесие, перенести другую ногу вперед, что достигается благодаря сокращению одних групп мышц и расслаблению других. Понятно, что при каждом шаге смещается центр тяжести тела, учитывается поверхность, по которой совершается передвижение, и, кроме того, выполняется ряд других задач: шаг совершается в определенном направлении, с заданной быстротой и т.д. Любой здоровый человек легко решает все перечисленные задачи, хотя даже и не знает, как это делается. Однако подобная согласованность отдельных звеньев системы регуляции движений достигается лишь в процессе развития и обучения. Наблюдая за моторикой детей различных возрастных групп, можно оценить, как постепенно совершенствуются их двигательные акты, как из отдельных подсистем формируется единая, интегративная система двигательной регуляции.

Подход с позиций системогенеза позволяет не только находить критерии для возрастных нормативов той или иной функции, но и выяснять структурно-функциональные основы различных аномалий развития. Может наблюдаться как полное, равномерное недоразвитие целостной функциональной системы, так и недоразвитие отдельных ее звеньев с установлением аномальных связей между нервными центрами. Например, встречаются дети достаточно ловкие в обычной игровой деятельности, но малоспособные к выполнению тонких движений, требующих определенного плана. В таких случаях можно говорить о недостаточности корковых отделов регуляции моторики. Наряду с этим приходится наблюдать детей неловких и неуклюжих в обиходной жизни, но способных хорошо рисовать, лепить, играть на музыкальных инструментах.

Особенно наглядно варианты межсистемного и внутрисистемного недоразвития проявляются при различных формах патологии речи. Встречаются дети с общей моторной неловкостью и с грубым косноязычием. Однако наблюдается немало случаев, когда общая моторика практически не страдает, а в речи обнаруживается много дефектов — заикание, “пулеметная”, невнятная речь и т.д. Наконец, приходится наблюдать учеников с изолированными расстройствами письма при достаточно хорошей устной речи.

Принципы системогенеза позволяют, таким образом, конкретизировать, структурно определять отклонения в возрастной эволюции нервной системы и намечать пути преодоления формирующихся дефектов. Эти пути коррекции принципиально могут быть распределены на несколько групп: стимуляция развития отстающих от возрастных показателей функций, размыкание установившихся в ходе искаженного развития аномальных связей, формирование новых комплексов внутри- и межсистемных взаимодействий. В зависимости от конкретной формы дефекта возможны одновременные лечебные воздействия в нескольких направлениях. Однако, учитывая преемственность этапов индивидуального развития, часто приходится идти по пути поэтапного восстановления; при этом на каждом этапе подготавливается фундамент для нового Усложнения функции. Если, например, ребенок не может в достаточном объеме совершать движения языком, то от него трудно добиться правильного произношения звуков.

К числу других важнейших функциональных систем мозга относятся слуховая и зрительная. Несколько особняком стоит интеллектуальная сфера, поскольку ее связь с особенностями строения мозга гораздо сложнее. Основные данные о возрастных характеристиках и нарушениях главных функциональных систем представлены в соответствующих главах.

ВОЗРАСТНАЯ ЭВОЛЮЦИЯ МОЗГА

Эволюция человека как биологического вида исключительно сложна. Следовательно, это в полной мере относится к мозгу. Однако это не означает, что мозг человека следует рассматривать как нечто застывшее, неизменяемое. В процессе онтогенетического развития мозг человека претерпевает значительные изменения. В анатомическом отношении мозг новорожденного и мозг взрослого человека существенно различаются. Это означает, что в процессе индивидуального развития происходит возрастное эволюционирование мозговых структур. Кроме того, даже после завершения морфологического созревания нервной системы человека остается необъятная “зона роста” в смысле совершенствования, перестройки и нового образования функциональных систем. Мозг как совокупность нервных элементов у всех людей остается примерно одинаковым, но на основе этой первичной структуры создается бесконечное разнообразие функциональных особенностей.

Завершенность биологической эволюции человека следует понимать не как конечный пункт, а как динамический момент, открывающий большие возможности для индивидуальных вариаций, для постоянного совершенствования личности.

В процессе эволюции мозга можно выявить два важнейших стратегических направления. Первое из них заключается в максимальной предуготованности организма к будущим условиям существования. Это направление характеризуется большим набором врожденных, инстинктивных, реакций, которыми организм оснащен буквально на все случаи его жизни. Однако набор таких “случаев” довольно стереотипен и ограничен (питание, защита, размножение).

В мире организмов-автоматов нет надобности в индивидуальном обучении, личном прошлом, ибо организм рождается наделенным способностями к определенным действиям. Стоит измениться условиям, как наступает гибель. Однако огромная плодовитость сводит практически на нет “неразумность” отдельных особей, не имеющих гибкости в реагировании. Благодаря той же гигантской плодовитости происходит быстрое приспособление целых поколений к меняющимся факторам среды: тысячные и миллионные потеря вследствие неприспособленности быстро восполняются.

Если от мира насекомых, где автоматизация поведения достигает наивысшего расцвета, обратиться к миру млекопитающих, то можно увидеть совсем иную картину: врожденные, инстинктивные формы реагирования “обрастают” индивидуализированными реакциями, основанными на личном опыте. Поведение млекопитающего в какой-либо ситуации гораздо менее определенно, чем насекомого; шаблонов поведения становится все меньше, а исследовательские, ориентировочные реакции занимают все больше места.

Примечательно, что для такой формы жизнедеятельности требуется гораздо больше мозгового вещества. Впрочем, это и понятно. Мозг насекомого — это, по существу, многопрограммный исполнительный автомат, тогда как мозг млекопитающего — автомат самообучающийся, способный к вероятностному прогнозированию.

Однако главное не в количестве, а в структуре мозгового вещества. В рамках второго направления эволюции, предоставившего индивидам наибольшее число степеней свободы действия, происходит неуклонное увеличение размеров коры больших полушарий мозга. Этот отдел является наименее специализированным и, следовательно, наиболее пригодным для фиксации личного опыта. Принцип кортикализации функций, таким образом, предполагает возможность их непрерывного совершенствования.

Казалось бы, второе направление эволюции наиболее перспективно, и его представителям заранее обеспечено полное процветание. Но способность к индивидуальному обучению дается за счет неприспособленности в раннем детстве. Пока происходит обучение, часть неопытного молодняка, естественно, погибает.

Таким образом, возникает трудно разрешимая дилемма: увеличить или сократить срок обучения. В первом случае потомство становится особенно опытным. Однако при этом очень велик риск для жизни. Во втором случае рано повзрослевшему существу грозит плохая приспособляемость, “неразумность”, что в конце концов тоже неблагоприятно для выживания.

В живой природе существует множество компромиссных решений этой дилеммы, суть которых сводится к одному: чем больше набор врожденных реакций для первоначального выживания, тем короче период детства и меньше способность к индивидуальному обучению. Человек в этом ряду занимает особое место: его новорожденный самый беспомощный, а детство — самое продолжительное во всем животном мире. В то же время у человека наиболее высокая способность к обучению, к творческим взлетам мысли.

Однако путь от беспомощного новорожденного до социально зрелого индивида чрезвычайно велик.

Новорожденный фактически ничего не умеет и практически всему может и должен научиться в течение жизни. Как избежать ошибок и искажений в развитии, как добиться формирования гармоничной, творческой личности? Существует мнение, что все зависит от воспитания. Новорожденного можно сравнить с своего Рода нулевым циклом предстоящей постройки, и из этого нуля можно сотворить все, что угодно.

Взгляд на период новорожденности как на нулевую фазу не нов. Еще в XVII в. Д.Локк развивал идеи о том, что душа новорожденного — “чистая доска”, “пустое помещение”, которое заполняется в процессе развития и воспитания. Эти постулаты надолго закрепились в педагогике. Однако современные исследования показывают, что мозг новорожденного — не просто безликая масса клеток, ожидающих внешних воздействий, а генетически запрограммированная система, постепенно реализующая заложенную в нее тенденцию развития. Только что родившийся ребенок — далеко не “нуль”, а сложнейший результат насыщенного перестройками периода внутриутробного развития.

Если продолжить сравнение мозга новорожденного с “чистой доской”, незаполненной тетрадью, то можно отметить, что несмотря на внешнее сходство всех тетрадей каждый экземпляр имеет свои особенности. В одном, например, нельзя писать чернилами (они расплываются), в другом обнаруживаются неразрезанные страницы (поневоле приходится оставлять пустые места), в третьем перепутана нумерация страниц и необходимо делать записи не по порядку, а в разных местах. Более того, практически невозможно записать во все экземпляры один и тот же текст, одни и те же сведения, не говоря уже о различиях формы, стиля изложения и почерка. В одних случаях изложение получается предельно сухим, в других — романтически приподнятым, в третьих целые фрагменты оказываются совершенно неразборчивыми. Однако следует отметить, что сравнение мозга с тетрадью чересчур поверхностно, ибо мозг человека — это не компьютер для фиксации сведений, а система, активно перерабатывающая информацию и способная самостоятельно извлекать новую информацию на основе творческого мышления. Главной причиной творческого, интеллектуального развития ребенка является необходимость взаимодействия отдельных форм поведения в ходе решения возникающих и усложняющихся в окружении ребенка жизненных задач.

На основе изучения развивающегося мозга можно условно говорить о “биологическом каркасе личности”, который влияет на темп и последовательность становления отдельных личностных качеств. Понятие “биологический каркас” динамическое. Это, с одной стороны, генетическая программа, постепенно реализующаяся в процессе взаимодействия со средой, с другой — промежуточный результат такого взаимодействия. Динамичность “биологического каркаса” особенно наглядна в детстве. По мере повзросления биологические параметры все более стабилизируются, что дает возможность разрабатывать типологию темпераментов и других личностных характеристик.

Важнейшими факторами “биологического каркаса личности” являются особенности мозговой деятельности. Эти особенности генетически детерминированы, однако эта генетическая программа всего лишь тенденция, возможность, которая реализуется с различной степенью полноты и всегда с какими-то модификациями. При этом играют большую роль условия внутриутробного развития и различные факторы внешней среды, воздействующие после рождения. Все же влияния внешних факторов небеспредельны. Генетическая программа определяет предел колебаний в своей реализации, и этот предел принято обозначать как норму реакции.

Например, такие функциональные системы, как зрительная, слуховая, двигательная, могут существенно различаться в нормах реакции. У одного человека от рождения присутствуют задатки абсолютного музыкального слуха, другого нужно обучать различению звуков, но выработать абсолютный слух так и не удается. Тo же самое можно сказать о двигательной неловкости или, наоборот, одаренности. Таким образом, “биологический каркас” в известной степени предопределяет контуры того будущего ансамбля, который называется личностью.

Говоря о вариантах нормы реакции отдельных функциональных систем, следует указать на относительную независимость их друг от друга. Например, между музыкальным слухом и моторной ловкостью нет однозначной связи. Можно прекрасно, тонко понимать музыку, но плохо выражать ее в движениях. Этот факт раскрывает одну из важнейших закономерностей эволюционирования мозга — дискретность формирования отдельных функциональных систем.

Наши рекомендации