Равномерное распределение
Часто на практике мы имеем дело со случайными величинами, распределенными определенным типовым образом, то есть такими, закон распределения которых имеет некоторую стандартную форму. Уже были рассмотрены примеры таких законов распределения для дискретных случайных величин (биномиальный и Пуассона). Для непрерывных случайных величин тоже существуют часто встречающиеся виды закона распределения, и в качестве первого из них рассмотрим равномерный закон.
Закон распределения непрерывной случайной величины называется равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение (f(x) = const при a ≤ x ≤ b, f(x) = 0 при x < a, x > b).
Найдем значение, которое принимает f(x) при Из условия нормировки следует, что откуда .
Вероятность попадания равномерно распределенной случайной величины на интервал равна при этом
Вид функции распределения для равномерного закона:
Пример. Автобусы некоторого маршрута идут с интервалом 5 минут. Найти вероятность того, что пришедшему на остановку пассажиру придется ожидать автобуса не более 2 минут.
Решение. Время ожидания является случайной величиной, равномерно распределенной в интервале [0, 5]. Тогда
Нормальное распределение.
Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А. Муавр в 1733 г. Через некоторое время нормальное распределение снова открыли и изучили К. Гаусс (1809 г.) и П. Лаплас, которые пришли к нормальной функции в связи с работой по теории ошибок наблюдений.
Непрерывная случайная величина называется распределенной по нормальному закону, если ее плотность распределения имеет вид:
, , , (5)
Замечание.Таким образом, нормальное распределение определяется двумя параметрами: а и σ.
График плотности нормального распределения называют нормальной кривой (кривой Гаусса). Выясним, какой вид имеет эта кривая, для чего исследуем функцию (5).
1) Область определения этой функции: (-∞, +∞).
2) f(x) > 0 при любом х (следовательно, весь график расположен выше оси Ох).
3) то есть ось Ох служит горизонтальной асимптотой графика при
4) при х = а; при x > a, при x < a. Следовательно, – точка максимума.
5) f(x – a) = f(a – x), то есть график симметричен относительно прямой х = а.
6) при , то есть точки являются точками перегиба.
Примерный вид кривой Гаусса изображен на рис.1.
Рис.1
Найдем вид функции распределения для нормального закона:
(6)
Перед нами так называемый «неберущийся» интеграл, который невозможно выразить через элементарные функции. Поэтому для вычисления значений F(x) приходится пользоваться таблицами. Они составлены для случая, когда а = 0, а σ = 1.
Нормальное распределение с параметрами а = 0, σ = 1 называется нормированным, а его функция распределения
- (7)
- функцией Лапласа.
Ниже приведены графики плотности и функции нормального распределения для а = 0, s=1:
Рис. 2
Эта кривая при a =0, s=1 получила статус стандарта, ее называют единичной нормальной кривой, то есть любые собранные данные стремятся преобразовать так, чтобы кривая их распределения была максимально близка к этой стандартной кривой.
Замечание.Функцию распределения для произвольных параметров можно выразить через функцию Лапласа, если сделать замену: , тогда .
Найдем вероятность попадания нормально распределенной случайной величины на заданный интервал:
(8)
Пример. Случайная величина Х имеет нормальное распределение с параметрами а = 3, σ = 2. Найти вероятность того, что она примет значение из интервала (4, 8).
Решение.
Правило «трех сигм».
Найдем вероятность того, что нормально распределенная случайная величина примет значение из интервала (а-3s, а+3s):
Следовательно, вероятность того, что значение случайной величины окажется вне этого интервала, равна 0,0027, то есть составляет 0,27% и может считаться пренебрежимо малой. Таким образом, на практике можно считать, что все возможные значения нормально распределенной случайной величины лежат в интервале (а-3s, а+3s).
Полученный результат позволяет сформулировать правило «трех сигм»: если случайная величина распределена нормально, то модуль ее отклонения от х = а не превосходит 3σ.