Сихологические особенности.
Компетентность, без преувеличения, — это вершина, к которой стремится каждый специалист, но далеко не каждый достигает желанной цели, настолько труден и неоднозначен этот путь. Основными элементами, определяющими профессиональный облик человека, являются его знания и умения в соответствующей предметно-содержательной сфере и психологические способности и особенности, позволяющие ему стать специалистом того или иного уровня, иными словами, его психологическая готовность к освоению своего ремесла. Практика показывает: даже блестяще подготовленный в предметной области специалист порой оказывается профессионально непригодным по причинам психологического характера. Тем более он не всегда может стать компетентным человеком, особенно в сферах, предполагающих интенсивное межличностное взаимодействие.
Поскольку деятельность тьютора сосредоточена в психологическом пространстве человеческих отношений, ему неизбежно придется осваивать психологические техники, учиться чувствовать себя комфортно и находить пути в одном из самых запутанных лабиринтов - лабиринте человеческих отношений. От умения тьютора устанавливать отношения и оказывать влияние на обучающихся зависит многое, а главное — результат обучения и его качество.
Глава 2. Элективный курс «Задачи с параметрами», как возможность применение идей тьюторского движения
Для жизни в современном информационном обществе важным является формирование математического стиля мышления, проявляющегося в умении применять индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.
Человек с развитым математическим мышлением может самостоятельно находить необходимую информацию, работать с информацией, применять полученную информацию. Для того, чтобы уверенно чувствовать себя в современном мире, человек должен уметь проанализировать возникающую проблему, учесть все ее аспекты и сделать правильный выбор.
Для развития этих способностей, а также творческой и прикладной сторон мышления в математике применяются задачи – основная учебная деятельность в рамках данного предмета. И среди математических задач особое место занимает линия задач с параметрами, представляющая собой широкое поле для полноценной математической деятельности. Дело в том, что задача с параметром (уравнение, неравенство, система) – целый класс задач, поэтому учащемуся приходиться решать сразу весь этот класс, что, естественно, влечет за собой необходимость разбора различных случаев в зависимости от определенных значений параметра. Это приводит к тому, что решение в такой задаче как бы «ветвится» в зависимости от значений параметра, что, в свою очередь, требует от учащегося умений работать с возрастающим объемом информации и, при записи ответа, обобщить полученную информацию.
Данная работа представляет собой разработанный элективный курс по математике «Задачи с параметрами».
Цель данной работы – разработать элективный курс «Задачи с параметрами», где в процессе обучения педагог выступает в роли тьютора.
В предлагаемой работе решаются следующие задачи:
· Выделяются основные типы задач с параметрами и описываются методы их решения.
· Предлагается последовательность изучения этих типов задач в рамках программы для школ (классов) с углубленным изучением математики (данная последовательность может быть реализована и в профильных классах). Разработка занятий для проведение уроков тьютором.
Методика изучения содержательной линии «Задачи с параметрами»
Форма проведения занятий по курсу предлагается выбрать самостоятельное изучение узловых вопросов данной темы.
Предлагаемая методика изучения содержательной линии «Задачи с параметрами» предполагает изучение следующих тем:
· Знакомство с параметром. Замена параметра числом.
· Параметр и поиск решений уравнений, неравенств и их систем.
· Параметр как равноправная переменная.
· Простейшие уравнения и неравенства, решаемые аналитически. Равенства вида . Неравенство вида ( ).
· Задачи на свойства квадратичной функции, решаемые аналитически.
· Уравнение вида: Неравенства вида:
· Свойство функции в задачах с параметрами. Область значений функции.
· Свойство функции в задачах с параметрами. Экстремальные свойства функции.
· Свойство функции в задачах с параметрами. Монотонность. Четность. Периодичность.
· Графические приемы. Координатная плоскость . Параллельный перенос.
· Графические приемы. Координатная плоскость . Поворот.
· Графические приемы. Координатная плоскость . Гомотетия. Растяжение и сжатие к прямой.
· Графические приемы. Координатная плоскость .
· «Каркас» квадратичной функции. Дискриминант. Старший коэффициент.
· Вершина параболы.
· «Каркас» квадратичной функции. Соотношения между корнями квадратного уравнения. Уравнения и неравенства с параметром, приводящиеся к квадратным
· Применение производной.
· Методы поиска необходимых условий. Использование симметрии аналитических выражений. «Выгодная точка»
Каждая тема рассчитана на 2 часа (итого 32 часа). К каждой теме предлагается, раздаточный материал, содержащий необходимую информацию по изучению темы с разбором основных типов задач. Материал подготовлен таким образом, чтобы ученик самостоятельно мог изучать материал. Для обучения и контроля усвоения материала предлагается набор задания рекомендуемых для выполнения. Приведен набор заданий для 10 вариантов, способствующий индивидуализации процесса обучения. Таким образом, материал для обучения состоит из
· Материал для выдачи ученику с необходимой информаций по теме.
· Разбор основных типов задач по теме. (предлагаемый ученику).
· Список заданий необходимых для выполнения, способствующих усвоению материла, а также контроля уровня знаний.(10 вариантов)
· Задачная база (задачи по изучаемым темам).
Библиографический список
1. Горштейн, П.И. Задачи с параметрами. [Текст]/ П.И. Горштейн, В. Б. В.Б. Полонский, М. С. Якир – М: Илекса, - 2003, - 336 с.
2. Долгоруков, А.М. Практическое руководство для тьютора системы Открытого образования на основе дистанционных технологий [Текст]/ А.М. Долгоруков – М: ЦИТО, - 2002г.
3. Ковалева, Т.М. Введение в тьюторство [Электронный ресурс]/ http://www.mioo.ru/
4. Костина Н. А. Тьютор как сопровождающий профессиональное развитие педагогов [Текст]/ Н. А. Костина. - Сибирский учитель. – 2006. – № 1.
5. Ле Гофф, Ж. Интеллектуалы в средние века [Текст]/ Ж. Ле Гофф. – Долгопрудный, 1997г.
6. Моденов, В.П. Задачи с параметрами. Координатно-параметрический метод. [Текст]/ В.П. Моденов. – М: Академ, - 2007.- 285с.
7. Муслинов, В. С. Задачи с параметрами. [Электронный ресурс]/ http://www.depedu.yar.ru
8. Подгорная, И. И. Задачи с параметрами. [Рукопись].
9. Попов, А.А. Тьюторство как педагогическая система культурного самоопределения [Тескт]/ А. А. Попов. – Томск, 1996. - C. 49-57.
10. Попов, В.А. Уравнения и неравенства с параметрами. [Текст]/ Попов В. А. – Сыктывкар: Коми гос.– Элементарная математика и начала анализа. – 2002г.- с. 300.
11. Рыбалкина Н.В. Идея тьюторства - идея педагогического поиска [Текст]/ Н.В. Рыбалкина // Тьюторство: идея и идеология. -Томск, 1996. - C. 15-30
12. Щенников, С.А. Основы деятельности тьютора в системе дистанционного образования. [Текст]/ С.А. Щенников, А.Г.Теслинов, А.Г.Чернявская. – М: Дрофа, - 2005.- 608с.
[1] Иностранные университеты. Вып.1. Университеты Англии