Генетическая инженерия, ее задачи, методы, возможности. Значение генетической инженерии в решении продовольственных проблем, лечении наследственных заболеваний

Генетическая инженерия – направление молекулярной биологии и генетики, занимается направленным изменением биол-кой инф-ии клеток или организмов для получения живых существ с заданными фенотипическими характеристиками. Задачи генетической инженерии разнообразны, что объясняет разные уровни ее применения – организменный, клеточный, генный.

Представление об организменном уровне применения генетической инженерии дает пример аллофенных животных. Тела их состоят из генотипически разных тканей, развившихся из клеток неск-их родителей, искусственно объединенных в данном потомке. На кл-ом уровне применения – путем соматической гибридизации получают гибриды, совмещающие в 1ой кл генотипы орг-мов разных биол-ких видов. На генном уровне – объединяет в себе методы получения отд-ых генов и введения их в геном др орг-мов с целью изменить фенотип последних.

Селекционеры путем пересадки генов азобактерий пытаются получить растения, фиксирующие азот из воздуха. Некоторые перспективы открываются в области медицины. Введение в организм соответствующих генов при дефектности собственных устранит наследственно обусловленные нарушения обмена веществ.

Генная инженерия служит мощным орудием изменения наследственности живых организмов на благо человека. Но безответственность в исследованиях такого рода таит опасность глобальной катастрофы в связи с появлением патогенных свойству микроорганизмов, в обычных условиях безвредных для человека.

Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, , микробиология, вирусология. Основные этапы решения генноинженерной задачи следующие:

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы.

Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путём использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований. В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генноинженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента. Также стоит отметить значительную критику этой технологии в СМИ: разработка генноинженерных вирусов воспринимается многими как угроза для всего человечества. С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генноинженерных вирусных векторов для исцеления взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) — игрунка обыкновенная. Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей. Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем.

Наши рекомендации