Хлорорганические соединения

К веществам данной группы относятся ДДТ, гексахлорциклогексан (ГХЦГ), гексахлоран, алдрин и др. Большинство является твердыми ве­ществами, хорошо растворимыми в жирах.

В организм хлорорганические вещества поступают ингаляционным путем, через кожные покровы и перорально. Выделяются почками и через ЖКТ. Вещества обладают выраженными кумулятивными свойства­ми и накапливаются в паренхиматозных органах, липоидосодержащих тканях.

Хлорорганические соединения обладают липоидотропностью, спо­собны проникать внутрь клеток и блокировать функцию дыхательных ферментов, в результате чего нарушаются процессы окисления и фосфо-рилирования во внутренних органах и нервной ткани.

При острых отравлениях в легких случаях наблюдается слабость, головная боль, тошнота. В тяжелых случаях имеет место поражение нервной системы (энцефалополиневрит), печени (гепатит), почек (нефропатия), органов дыхания (бронхит, пневмония), наблюдается по­вышение температуры тела.

Для хронического отравления характерны функциональные наруше­ния нервной деятельности (астеновегетативный синдром), изменение функции печени, почек, сердечно-сосудистой системы, эндокринной сис­темы, ЖКТ. При попадании на кожу хлорорганические соединения вызы­вают профессиональные дерматиты.

Фосфорорганические соединения.

Кфосфорорганическим соединениям (ФОС) относятся карбофос, хлорофос, тиофос, метафос и др. ФОС плохо растворимы в воде и хо­рошо растворимы в жирах.

Поступают в организм преимущественно ингаляционным путем, а также через кожные покровы и перорально. Распределяются в организме главным образом в липоидосодержащих тканях, включая нервную систе­му. Выделяются ФОС почками и через ЖКТ.

Механизм токсического действия ФОС связан с угнетением фермен­та холинэстеразы, разрушающей ацетилхолин, что приводит к накоплению ацетилхолина, избыточному возбуждению М- и Н-холинорецепторов.

Клиническая картина описывается холиномиметическими эффекта­ми: тошнотой, рвотой, спастическими болями в животе, слюнотечением, слабостью, головокружением, явлениями бронхоспазма, брадикардией, сужением зрачков. В тяжелых случаях возможны судороги, непроизволь­ное мочеиспускание и дефекация.

Профилактика.

1. Технологические мероприятия - механизация и автоматизация работы с ядохимикатами. Запрещено опрыскивание растений ядохимикатами ручным способом.

2. Строгое соблюдение правил хранения, транспортировки и применения ядохимикатов.

3. Санитарно-техничесше меры. Крупные склады хранения ядохимика­тов должны располагаться не ближе 200 метров от жилых зданий и скотных дворов. Их оборудуют приточно-вытяжной вентиляцией.

4. Применение средств индивидуальной защиты. Работающих с химика­тами снабжают спецодеждой, защитными приспособлениями (противогаз, респиратор, очки). После работы обязательно принимают душ.

5. Гигиеническое нормирование. Концентрация ядохимикатов в склад­ских помещениях и при работе с ними не должна превышать ПДК.

6. Длительность рабочего дня устанавливаю в пределах 4-6 часов в зависимости от степени токсичности ядохимикатов. В жаркое время года работы следует производить в утренние и вечерние часы. Запре­щена обработка посевных площадей в ветреную погоду.

7. Ознакомление рабочих с токсическими свойствами химикатов и спо­собами безопасной работы с ними.

8. Лечебно-профилактические мероприятия. Предварительные и перио­дические медицинские осмотры. Нельзя работать с химикатами под­росткам, беременным и кормящим женщинам, а также лицам с повы­шенной чувствительностью к ядохимикатам.

133. Охрана окружающей среды при использовании в сельском хозяйстве агрохимикатов.

Ни один новый пестицид не может быть использован в сельскохозяйственной практике без специального разрешения Министерства здравоохранения России.

Уровень загрязненности атмосферного воздуха пестицидами зависит от их физико-химических свойств, агрегатного состояния, способа применения. Наибольшее загрязнение наблюдается при обработке растений авиационным методом с применением аэрозолей. Поэтому поля, расположенные от населенных пунктов ближе 1 км, не допускается обрабатывать этим методом. В этих случаях следует применять наземную аппаратуру, за исключением аэрозольных генераторов, и использовать умеренно и малоопасные препараты.

В черте населенного пункта и в радиусе 1 км вокруг него, согласно санитарным правилам, не допускается обработка растений стойкими и высокоопасными пестицидами, а также веществами, имеющими неприятный запах, например метафос, хлорсмесь. Химическую обработку зеленых насаждений в этом случае следует проводить на рассвете, до восхода солнца. Запрещается обработка насаждений любыми пестицидами на территории больниц, школ, детских и оздоровительных учреждений, спортплощадок.

О проведении предстоящей обработки пестицидами зеленых насаждений в населенном пункте и вблизи него необходимо извещать санэпидстанцию и жителей, так как пребывание людей в обрабатываемой зоне не допускается.

Растительные продукты и корма, выращенные на участках, обработанных стойкими пестицидами, остаточное количество которых превышает предельно допустимое, могут быть разрешены для питания и на корм скоту в каждом конкретном случае органами санитарного и ветеринарного контроля.

Чтобы предупредить проникновение в водоем пестицидов при обработке ими полей, лесов, лугов, необходимо соблюдать санитарно-защитную зону, равную 300 м от обрабатываемых участков к водоему. Размер этой зоны может быть увеличен в зависимости от рельефа местности, характера и интенсивности травяного покрова. При необходимости обработки растений в самой зоне нужно применять нестойкие мало- и умеренно опасные препараты, используя при этом наземную аппаратуру.

Не допускается применение пестицидов в первом поясе зоны санитарной охраны хозяйственно-питьевых водопроводов. На территории второго пояса разрешается применять пестициды, не обладающие кумулятивными свойствами. Не допускается мытье тары, в которой находились пестициды, сброс загрязненных пестицидами вод и остатков неиспользованных препаратов в эти водоемы.

134. Основы личной гигиены. Гигиена кожи и полости рта.

Личная гигиена включает с себя набор правил, способствующих укреплению и сохранению нашего здоровья через соблюдение гигиенического режима как в быту, так и в труде. И в первую очередь, следует соблюдать чистоту тела. За неделю через кожу человека выделяется 200 г сала и 3-7 л пота. Все это нужно регулярно смывать, иначе нарушатся защитные свойства кожи и она превратится в рассадник микробов и грибков-паразитов.

Личная гигиенакасается вопросов не только индивидуального плана, но и социального. Она включает в себя следующие разделы:

1. Гигиена тела человека, гигиена полости рта, гигиена кожи, косметические вопросы;

2. Гигиена сна и отдыха - принципы правильного чередования труда и отдыха, оптимальный суточный режим;

3. Гигиенические правила рационального питания и отказ от вредных привычек;

4. Гигиена одежды и обуви.

Главная задача личной гигиеныкак науки - исследование влияния условий труда и быта на здоровье людей с целью предупреждения заболеваний и обеспечения оптимальных условий жизни человека для сохранения здоровья и долголетия.

Исследования показали, что количество нанесенных на чистую кожу бактериальных культур уменьшается на 85% через 10 мин. Вывод прост: чистая кожа имеет бактерицидные свойства, грязная - во многом их утрачивает. Открытые участки тела в большей степени подвержены загрязнению. Особенно много вредных микроорганизмов находится под ногтями, поэтому уход за ними очень важен. Почаще остригайте их и держите в чистоте.

Основные средства личной гигиены для ухода за кожей - вода и мыло. Лучше, если вода будет мягкая, а мыло - туалетное. Не забывайте учитывать особенности вашей кожи. Она может быть нормальной, сухой или жирной. Настоятельно рекомендуется принимать душ после работы и перед сном. Температура воды при этом должна быть чуть выше нормальной температуры тела - 37-38 градусов.

Личная гигиенавключает в себя мытье в ванне или бане с применением мочалки нужно не реже раза в неделю. После мытья непременно смените нательное белье.

Ноги необходимо ежедневно мыть прохладной водой и мылом. Холодная вода уменьшает потовыделение.

Волосы желательно мыть в мягкой воде. Для ее смягчения добавьте 1 чайную ложку пищевой соды на 5 л воды. Сухие и нормальные волосы следует мыть раз в 10 дней, а жирные - раз в неделю. Подходящая температура воды - 50-55 градусов. Не лишним будет ополаскивать волосы крепким настоем ромашки.

Содержание зубов в чистоте способствует их сохранению. Поэтому зубы желательно чистить дважды в день - утром и перед сном, а после еды полоскать рот. Дважды в год неплохо посетить стоматолога для своевременного обнаружения кариеса.

135. Гигиена одежды и обуви, характеристика и свойства материалов для изготовления одежды обуви.

Одежда служит для регулирования теплоотдачи тела, является защитой от не­благоприятных метеорологических условий, внешних загрязнений, механи­ческих повреждений. Одежда остается одним из важных средств адаптации человека к условиям окружающей среды.

В связи с различными физиологическими особенностями организма, ха­рактером выполняемой работы и условиями окружающей среды различают несколько типов одежды:

■ бытовая одежда, изготовляемая с учетом сезонных и климатических осо­бенностей (зимняя, летняя, одежда для средних широт, севера, юга);

■ детская одежда, которая при малой массе, свободном покрое и изготовле­нии из мягких тканей обеспечивает высокую теплозащиту в холодное вре­мя года и не приводит к перегреванию летом;

■ профессиональная одежда, сконструированная с учетом условий труда, за­щищающая человека от воздействия профессиональных вредностей. Видов профессиональной одежды много; это обязательный элемент средств лич­ной защиты работающего. Одежда часто имеет решающее значение в ослаб­лении влияния неблагоприятного профессионального фактора на организм;

■ спортивная одежда, предназначенная для занятий различными видами спорта. В настоящее время конструированию спортивной одежды прида­ется большое значение, особенно в скоростных видах спорта, где ослабле­ние трения воздушных потоков о тело спортсмена способствует улучше­нию спортивных результатов. Кроме того, ткани для спортивной одежды должны быть эластичными, с хорошей гигроскопичностью и воздухопро­ницаемостью;

■ военная одежда особого покроя из определенного ассортимента тканей. Гигиенические требования, предъявляемые к тканям и покрою военной одежды, особенно высоки, так как одежда военного — это его дом. Ткани должны обладать хорошей гигроскопичностью, воздухопроницаемостью, хорошо сохранять тепло, быстро высыхать при намокании, быть износо­устойчивыми, пылестойкими, легко отстирываться. При носке ткань не должна обесцвечиваться и деформироваться. Даже совершенно мокрый комплект одежды солдата не должен весить более 7 кг, иначе тяжелая одежда будет снижать работоспособность. Различают повседневную, парадную и рабочую военную одежду. Кроме того, имеются комплекты сезонной одежды. Покрой военной одежды различен и зависит от рода войск (одежда моряков, пехотинцев, десантников). Парадная одежда имеет различные от­делочные детали, которые придают костюму торжественность и нарядность;

■ больничная одежда, состоящая преимущественно из белья, пижамы и ха­лата. Такая одежда должна быть легкой, хорошо очищаться от загрязне­ний, легко дезинфицироваться, ее изготавливают обычно из хлопчатобу­мажных тканей. Покрой и внешний вид больничной одежды требуют даль­нейшего совершенствования. В настоящее время возможно изготовление больничной одежды одноразового пользования из бумаги особого состава.

Ткани для одежды делают из растительных, животных и искусственных во­локон. Одежда в целом состоит из нескольких слоев и имеет различную.тол­щину. Средняя толщина одежды различается в зависимости от времени года. Например, летняя одежда имеет толщину 3,3—3,4 мм, осенняя — 5,6—6,0 мм, зимняя — от 12 до 26 мм. Масса мужской летней одежды составляет 2,5—3 кг, зимней — 6—7 кг.

Независимо от типа, назначения, покроя и формы одежда должна соответ­ствовать погодным условиям, состоянию организма и выполняемой работе, весить не более 10% массы тела человека, иметь не затрудняющий кровообра­щения покрой, не стесняющий дыхания и движений и не вызывающий сме­щения внутренних органов, легко очищаться от пыли и загрязнений, быть прочной.

Одежда играет большую роль в процессах теплообмена организма с окружа­ющей средой. Она обеспечивает такой микроклимат, который в различных ус­ловиях окружающей среды позволяет организму оставаться в нормальном теп­ловом режиме. Микроклимат пододежного пространства является основным параметром при выборе костюма, так как в конечном итоге пододежный мик­роклимат в значительной степени определяет тепловое самочувствие человека. Под пододежным микроклиматом следует понимать комплексную характеристику физических факторов воздушной прослойки, прилегающей к поверхности кожи и непосредственно влияющей на физиологическое состояние человека. Эта индивидуальная микросреда находится в особенно тесном взаи­модействии с организмом, изменяется под влиянием его жизнедеятельности и в свою очередь непрерывно влияет на организм; от особенностей пододежно­го микроклимата зависит состояние терморегуляции организма.

Пододежный микроклимат характеризуется температурой, влажностью воз­духа и содержанием углекислоты.

Температура пододежного пространства колеблется от 30,5 до 34,6 °С при температуре окружающего воздуха 9—22 °С. В умеренном климате температура пододежного пространства понижается по мере удаления от тела, а при высо­кой температуре окружающей среды понижается по мере приближения к телу из-за нагревания солнечными лучами поверхности одежды.

Относительная влажность пододежного воздуха в условиях средней клима­тической полосы обычно меньше влажности окружающего воздуха и повыша­ется при повышении температуры воздуха. Так, например, при температуре окружающего воздуха 17 °С влажность подолежного воздуха составляет около 60%, при повышении температуры атмосферного воздуха до 24 °С влажность воздуха в пододежном пространстве уменьшается до 40%. При повышении температуры окружающего воздуха до 30—32 °С, когда человек активно потеет, влажность пододежного воздуха возрастает до 90—95%.

Воздух пододежного пространства содержит около 1,5-2,3% углекислоты, ее источником является кожа. При температуре окружающего воздуха 24—25 °С за 1 ч в пододежное пространство выделяется 255 мг углекислоты. В загряз­ненной одежде на поверхности кожи, особенно при увлажнении и повыше­нии температуры, происходит интенсивное разложение пота и органических веществ со значительным увеличением содержания углекислоты в воздухе под­одежного пространства. Если в платье из ситца или сатина свободного покроя содержание углекислоты в воздухе пододежного пространства не превышает 0,7%, то в узкой и тесной одежде из тех же тканей количество углекислоты достигает 0,9%, а в теплой одежде, состоящей из 3—4 слоев, оно увеличивается до 1,6%.

Свойства одежды в значительной мере зависят от свойств тканей. Ткани должны обладать теплопроводностью соответственно климатическим условиям, достаточной воздухопроницаемостью, гигроскопичностью и влагоемкостью, малой газопоглощаемостью, не иметь раздражающих свойств. Ткани должны

быть мягкими, эластичными и вместе с тем прочными, не изменять своих гигиенических свойств в процессе носки.

Хорошая воздухопроницаемость важна для летней одеж­ды, наоборот, одежда для работы на ветру при низкой температуре воздуха должна иметь минимальную воздухопроницаемость. Хорошее поглощение во­дяных паров — необходимое свойство бельевых тканей, совершенно неприем­лемое для одежды людей, работающих в атмосфере повышенной влажности или при постоянном смачивании одежды водой (рабочие красильньгх цехов, моряки, рыбаки и др.).

При гигиенической оценке тканей одежды исследуют их отношение к воз­духу, воде, тепловые свойства и способность задерживать или пропускать уль­трафиолетовые лучи.

Воздухопроницаемость тканей имеет большое значение для вентиляции пододежного пространства. Она зависит от количества и объема пор в ткани, характера обработки ткани.

Воздухонепроницаемая одежда создает затруднения в вентилировании по­додежного пространства, которое быстрое насыщается водяными парами, что нарушает испарение пота и создает предпосылки для перегревания человека.

Очень важно сохранение тканями достаточной воздухопроницаемости и во влажном состоянии, т. е. после смачивания дождем или намокания от пота. Мокрая одежда затрудняет доступ наружного воздуха к поверхности тела, в пододежном пространстве накапливаются влага и углекислота, что снижает защитные и тепловые свойства кожи.

Важным показателем гигиенических свойств тканей является их отношение к воде. Вода в тканях может находиться в виде паров либо в жидкокапельном состоянии. В первом случае говорят огигроскопичности, во втором — о влагоемкости тканей.

Гигроскопичность означает способность тканей поглощать воду в виде во­дяных паров из воздуха — впитывать парообразные выделения кожи человека. Гигроскопичность тканей различна. Если гигроскопичность льняного полот­на принять за единицу, то гигроскопичность ситца составит 0,97, сукна — 1,59, шелка — 1,37, замши — 3,13.

Мокрая одежда быстро отнимает тепло от тела и тем самым создает предпо­сылки к переохлаждению. При этом имеет значение время испарения. Так, фланель, сукно медленнее испаряют воду, значит, теплоотдача шерстяной одежды за счет испарения будет меньше, чем шелковой или льняной. В связи с этим влажная одежда из шелка, ситца или полотна даже при достаточно высо­кой температуре воздуха вызывает ощущение зябкости. Надетая поверх фла­нелевая или шерстяная одежда значительно смягчает эти ощущения.

Большое значение имеют тепловые свойства тканей. Потери тепла через одежду определяются теплопроводными свойствами ткани, а также зависят от насыщения тканей влагой. Степень влияния тканей одежды на общую теплопотерю служит показателем ее тепловых свойств. Эта оценка проводится пу­тем определения теплопроводности тканей.

Под теплопроводностью понимают количество тепла в калориях, проходя­щее в 1 с через 1 см2 ткани при ее толщине 1 см и температурной разнице на противоположных поверхностях в 1 °С. Теплопроводность ткани зависит от величины пор в материале, причем имеют значение не столько крупные про­межутки между волокнами, сколько мелкие — так называемые капиллярные поры. Теплопроводность ношеной или неоднократно стиранной ткани повы­шается, так как капиллярных пор становится меньше, число более крупных промежутков увеличивается.

Вследствие различной влажности окружающего воздуха поры одежды со­держат большее или меньшее количество воды. От этого меняется теплопро­водность, так как влажная ткань лучше проводит тепло, чем сухая. При пол­ном намокании теплопроводность шерсти увеличивается на 100%, шелка на 40% и хлопчатобумажных тканей на 16%.

Существенное значение имеет отношение тканей к лучистой энергии — способность задерживать, пропускать и отражать как интегральный поток сол­нечной радиации, так и биологически наиболее активные инфракрасные и ультрафиолетовые лучи. Поглощение тканями видимых и тепловых лучей в значительной мере зависит от их окраски, а не от материала. Любые неокра­шенные ткани поглощают видимые лучи одинаково, но темные ткани погло­щают больше тепла, чем светлые.

В жарком климате белье лучше делать из хлопчатобумажных окрашенных тканей (красный, зеленый), обеспечивающих лучшую задержку солнечных лучей и наименьший доступ тепла к коже.

Одной из существенных особенностей тканей является их проницаемость для ультрафиолетовых лучей. Она важна как элемент профилактики ультра­фиолетовой недостаточности, которая часто возникает у жителей крупных промышленных городов с интенсивным загрязнением атмосферного воздуха. Особое значение имеет прозрачность материалов в отношении ультрафиоле­товых лучей для жителей северных районов, где увеличение площади откры­тых частей тела не всегда возможно из-за суровых климатических условий.

Способность материалов пропускать ультрафиолетовые лучи оказалась нео­динаковой. Из синтетических тканей наиболее проницаемы для ультрафиоле­товых лучей капрон и нейлон — они пропускают 50—70% ультрафиолетовых лучей. Значительно хуже пропускают ультрафиолетовые лучи ткани из ацетат­ного волокна (0,1-1,8%). Плотные ткани — шерсть, сатин пропускают ультра­фиолетовые лучи плохо, а ситец и батист гораздо лучше.

Шелковые ткани редкого плетения, как неокрашенные (белые), так и окра­шенные в светлые тона (желтый, салатовый, голубой), более прозрачны для ультрафиолетовых лучей, чем материалы с большей удельной плотностью, тол­щиной, а также темных и насыщенных цветов (черный, сиреневый, красный).

Ультрафиолетовые лучи, прошедшие через ткани на основе полимеров, со­храняют свои биологические свойства и прежде всего антирахитическую ак­тивность, а также стимулирующее действие на фагоцитарную функцию лей­коцитов крови. Сохраняется также высокая бактерицидная эффективность по отношению к кишечной палочке и золотистому стафилококку. Облучение уль­трафиолетовыми лучами через капроновые ткани уже через 5 мин приводит к гибели 97,0-99,9% бактерий.

Под влиянием носки ткань одежды изменяет свои свойства вследствие из­носа и загрязнения.

Химические волокна делятся на искусственные и синтетические. Искусст­венные волокна представлены целлюлозой и ее ацетатными, вискозными и триацетатными эфирами. Синтетические волокна — это лавсан, кашмилон, хлорин, винил и т.д.

По физико-химическим и физико-механическим свойствам химические волокна значительно превосходят натуральные.

Синтетические волокна высокоэластичны, обладают значительным сопро­тивлением к многократным деформациям, устойчивы к истиранию. В отличие от натуральных химические волокна устойчивы к воздействию кислот, щело­чей, окислителей и других реагентов, а также к плесени и моли.

Ткани из химических волокон обладают антимикробным свойством. Так, на хлориновом белье при опытной носке микроорганизмы выживают значи­тельно меньше, чем на белье из натуральных тканей. Созданы новые волокна, которые подавляют рост стафилококковой флоры и кишечной палочки.

Ткани из химических волокон обладают и более высокой воздухопроница­емостью, чем материалы из натуральных волокон такой же структуры. Возду­хопроницаемость лавсановых, капроновых и хлориновых тканей выше, чем хлопчатобумажных.

Обувь (кожаная) должна способствовать формированию свода стопы, предотвращать развитие плоскостопия – иметь широкий приподнятый носок и каблук выс. 10 мм, плотный задник, обеспечивающий фиксацию пятки. Кончики пальцев не должны доходить до носка на 10 мм. Для подростков и взрослых в одежде и обуви возможно использование синтетических материалов, напр. искусственного меха, влаго– и ветрозащитных тканей для верхней одежды, кожезаменителей для обуви. Обувь, предназначенная для постоянного ношения, должна быть лёгкой, соответствовать размеру и иметь каблук не выше 3–4 см. Несоответствие её форме стопы, ношение тесной, узкой обуви на высоком каблуке приводит к деформации костей и суставов стопы, позвоночника, таза, к укорочению икроножных мышц, растяжению связок и вывихам голеностопного сустава. Популярные среди подростков кроссовки должны иметь стельки и подкладку из гигроскопического материала, толстую эластичную подошву, прочный верх со вставками-уплотнителями. Носить их следует с шерстяными или плотными хлопчатобумажными носками.

Одежду необходимо регулярно стирать, подвергать химической чистке; обувь – дезинфицировать, вкладывая внутрь смоченную формалином бумагу. Недопустимо пользование чужой одеждой и обувью.

136. Ионизирующие излучения, их виды, свойства и гигиеническая характеристика. Принципы защиты при работе с источниками ионизирующих излучений.

Ионизирующее излучение — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество.

Виды:

· Альфа-излучение представляет собой поток альфа-частиц — ядер гелия-4. Альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги.

· Бета-излучение — это поток электронов, возникающих при бета-распаде; для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров.

· Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом; для защиты эффективны тяжёлые элементы (свинец и т. д.), поглощающие МэВ-ные фотоны в слое толщиной несколько см. Проникающая способность всех видов ионизирующего излучения зависит от энергии

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения на организм были выявлены следующие особенности:

  1. Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.
  2. Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.
  3. Действие от малых доз может суммироваться или накапливаться.
  4. Генетический эффект - воздействие на потомство.
  5. Различные органы живого организма имеют свою чувствительность к облучению.
  6. Не каждый организм (человек) в целом одинаково реагирует на облучение.
  7. Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

От альфа-лучей можно защититься путём:

  • увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;
  • использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
  • исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

В качестве защиты от бета-излучения используют:

  • ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
  • методы и способы, исключающие попадание источников бета-излучения внутрь организма.

Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

  • увеличение расстояния до источника излучения;
  • сокращение времени пребывания в опасной зоне;
  • экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);
  • использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
  • использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
  • дозиметрический контроль внешней среды и продуктов питания.

137. Ионизирующие излучения: α-излучение, природа, характеристика, свойства, длина пробега в воздухе. Защита от α-излучения.

Альфа-излучение (альфа-лучи) — один из видов ионизирующих излучений; представляет собой поток быстро движущихся, обладающих значительной энергией, положительно заряженных частиц (альфа-частиц).

Основным источником альфа-излучения служат альфа-излучатели — радиоактивные изотопы, испускающие альфа-частицы в процессе распада. Особенностью альфа-излучений является его малая проникающая способность. Пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким (сотые доли миллиметра в биологических средах, 2,5—8 см в воздухе). Однако вдоль короткого пути альфа-частицы создают большое число ионов, то есть обусловливают большую линейную плотность ионизации. Это обеспечивает выраженную относительную биологическую эффективность, в 10 раз большую, чем при воздействии рентгеновского и гамма-излучений. При внешнем облучении тела альфа-частицы могут (при достаточно большой поглощенной дозе излучения) вызывать сильные, хотя и поверхностные (короткий пробег) ожоги; при попадании через рот долгоживущие альфа-излучатели разносятся по телу током крови и депонируются в органах ретикулоэндотелиальной системы и др., вызывая внутреннее облучение организма.

От альфа-лучей можно защититься путём:

  • увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;
  • использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
  • исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

138. Ионизирующие излучения: β-излучение, природа, характеристика, свойства, длина пробега в воздухе. Защита от β-излучения.

Бета-излучение - представляет собой поток электронов (β--излучение, или, чаще всего, просто β -излучение) или позитронов (β+-излучение), возникающих при радиоактивном распаде. В настоящее время известно около 900 бета-радиоактивных изотопов.

Масса бета-частиц в несколько десятков тысяч раз меньше массы альфа-частиц. В зависимости от природы источника бета-излучений скорость этих частиц может лежать в пределах 0,3 – 0,99 скорости света. Энергия бета-частиц не превышает нескольких МэВ, длина пробега в воздухе составляет приблизительно 1800 см, а в мягких тканях человеческого тела ~ 2,5 см. Проникающая способность бета-частиц выше, чем альфа-частиц (из-за меньших массы и заряда). Например, для полного поглощения потока бета-частиц, обладающих максимальной энергией 2 МэВ, требуется защитный слой алюминия толщиной 3,5 мм. Ионизирующая способность бета-излучения ниже, чем альфа-излучения: на 1 см пробега бета-частиц в среде образуется несколько десятков пар заряженных ионов.

В качестве защиты от бета-излучения используют:

  • ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
  • методы и способы, исключающие попадание источников бета-излучения внутрь организма.

139. Ионизирующие излучения: γ-излучение, природа, характеристика, свойства, длина пробега в воздухе. Защита от γ-излучения.

Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны — < 5×10−3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами.

Гамма-квантами являются фотоны с высокой энергией. Средний пробег гамма-кванта составляет около 100 м в воздухе и 10-15 см в биологической ткани. Гамма-излучение может также возникать при торможении быстрых заряженных частиц в среде (тормозное гамма-излучение) или при их движении в сильных магнитных полях (синхротронное излучение).
Источниками гамма-излучения являются также процессы в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд.
Гамма-излучение ядер испускается при переходах ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра.

Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

  • увеличение расстояния до источника излучения;
  • сокращение времени пребывания в опасной зоне;
  • экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);
  • использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
  • использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
  • дозиметрический контроль внешней среды и продуктов питания.

140. Понятие о закрытых источниках ионизирующих излучений. Принципы защиты.

Прежде всего необходимо отметить, что источники ионизирующих излу­чений в зависимости от отношения к радиоактивному веществу делятся на :

1) Открытые

2) Закрытые

3) Генерирующие ИИ

4) Смешанные

Закрытые источники- это источники, при нормальной эксплуатации которых радиоактивные вещества не попадают в окружающую среду

Эти источники находят широкое применение в практике. Например, они используются на судоверфях, в медицине (рентгеновский аппарат и тд.), в дефектоскопах, в химической промышленности.

Опасности при работе с закрытыми источниками :

1) Проникающая радиация.

2) Для мощных источников - образование общетоксических веществ (оксиды азота и др.)

3) В аварийных ситуациях - загрязнение окружающей среды радиоактивными веществами.

Надо сказать, что при работе с источниками радиации человек может подвергаться

1. Внешнему облучению

2. Внутреннему облучению (когда радиоактивное вещество попадает в организм и происходит облучение изнутри)

При работе с закрытыми источниками ионизирующих излучений, как это было указано в определении, не происходит выброса радиоактивных ве­ществ в окружающую среду и поэтому они не могут попасть внутрь организ­ма человека.

Наши рекомендации