Биофизическая характеристика мышечных и немышечных сократительных белков

Актин представляет собой длинную белковую нить, однако его нельзя отнести к фибриллярным белкам. Он состоит из отдельных глобулярных белков, сцепленных между собой таким образом, что вся структура представляет собой вытянутую цепь. Молекулы глобулярного актина (G-актина) имеют боковые и концевые центры связывания с другими такими же молекулами. В результате они объединяются таким образом, что образуют структуру, которую часто сравнивают с двумя нитками бус, соединенных вместе (рис. 7.1). Образованная из молекул G-актина лента закручена в спираль. Такая структура называется фибриллярным актином (F-актином). Шаг спирали (длина витка) составляет 38 нм, на каждый виток спирали приходится 7 пар G-актина. Полимеризация G-актина, то есть образование F-актина, происходит за счет энергии АТФ, и, наоборот, при разрушении F-актина выделяется энергия. Вдоль спиральных желобков актиновых филаментов (нитей) располагается белок тропомиозин. Каждая нить тропомиозина, имеющая длину 41 нм, состоит из двух идентичных ?-цепей, вместе закрученных в спираль с длиной витка 7 нм. Вдоль одного витка F-актина расположены две молекулы тропомиозина.

Каждая тропомиозиновая молекула соединяется, немного перекрываясь, со следующей, в результате тропомиозиновая нить простирается вдоль актина непрерывно.

В клетках поперечнополосатых мышц в состав тонких нитей кроме актина и тропомиозина входит еще и белок тропонин. На каждый шаг спирали F-актина приходится две молекулы тропонина. Этот глобулярный белок имеет сложное строение. Он состоит из трех субъединиц, каждая из которых выполняет свою функцию в процессе сокращения.

Толстая нить состоит из большого числа молекул миозина, собранных в пучок. Каждая молекула миозина длиной около 155 нм и диаметром 2 нм состоит из шести полипептидных нитей: двух длинных и четырех коротких. Длинные цепи вместе закручены в спираль с шагом 7,5 нм и образуют фибриллярную часть миозиновой молекулы. На одном из концов молекулы эти цепи раскручиваются и образуют раздвоенный конец. Каждый из этих концов образует комплекс с двумя короткими цепями, то есть на каждой молекуле имеются две головки. Это глобулярная часть миозиновой молекулы. В миозине выделяют два фрагмента: легкий меромиозин (ЛММ) и тяжелый меромиозин (ТММ), между ними находится шарнир. ТММ состоит из двух субфрагментов: S1 и S2. ЛММ и фрагмент S2 ТММ вложены в пучок нитей, а субфрагмент S1 выступает над поверхностью. Этот выступающий конец (миозиновая головка) способен связываться с активным центром на актиновой нити и изменять угол наклона к пучку миозиновых нитей.

Объединение отдельных молекул миозина в пучок происходит, скорее всего, за счет электростатических взаимодействий между ЛММ. Центральная часть нити (около 300 нм) не имеет головок. Весь комплекс миозиновых молекул простирается на 1,5 мкм. Это одна из самых больших биологических молекулярных структур, известных в природе.

При рассматривании в поляризационный микроскоп продольного среза поперечнополосатой мышцы видны светлые и темные участки. Темные участки (диски) являются анизотропными: в поляризованном свете они выглядят прозрачными в продольном направлении и непрозрачными — в поперечном, обозначаются буквой А. Светлые участки являются изотропными и обозначаются буквой I .

Диск I включает в себя только тонкие нити, диск А — и толстые, и тонкие. В середине диска А видна светлая полоса, называемая Н-зоной. Она не имеет тонких нитей. Диск I разделен тонкой полосой Z, которая представляет собой мембрану, содержащую структурные элементы, скрепляющие между собой концы тонких нитей. Участок между двумя Z-линиями называется саркомером.

Каждая толстая нить окружена шестью тонкими, а каждая тонкая — тремя толстыми. Таким образом, в поперечном срезе мышечное волокно имеет правильную гексагональную структуру.

Немышечное сокращение обеспечивается тубулином и веретеном деления.

Тубули́н — это белок, из которого построены микротрубочки. В них, а также в цитоплазме клеток он находится в форме димера, состоящего из двух форм — α- и β-тубулина. Одна молекула α-тубулина и одна молекула β-тубулина в цитоплазме клеток объединяются в димер.

В составе такого димера к каждой молекуле тубулина присоединено по одной молекуле ГТФ.

Связанная с ГДФ форма тубулина легче отделяется от микротрубочек, что определяет динамическую нестабильность микротрубочек — при определенных условиях они быстро распадаются почти полностью.

Веретено деления — структура, возникающая в клетках эукариот в процессе деления ядра. Получила своё название за отдалённое сходство формы с веретеном. Состоит из микротрубочек. Часть микротрубочек идёт от клеточных центров к структурам кинетохора хромосом (хромосомные, или кинетохорные микротрубочки). Другие микротрубочки тянутся к центральной части клетки и заканчиваются свободно в цитоплазме (цитоплазматические, или свободные микротрубочки). К периферии клетки отходят астральные микротрубочки.

Веретено обеспечивает расхождение хромосом к полюсам клетки благодаря двум процессам. Хромосомные микротрубочки укорачиваются путём разборки с +-концов, которые крепятся к кинетохору (при этом хромосомы остаются прикрепленными к микротрубочке). Свободные микротрубочки в ходе деления клетки удлиняются, а затем скользят друг по другу с помощью белков-моторов, благодаря чему увеличивается расстояние между клеточными центрами

Наши рекомендации