Математическая обработка результатов измерений

Для обработки результатов косвенных измерений, для построения моделей объектов измерений и процессов измерительного преобразования, для оценки систематических погрешностей используют различные разделы математического анализа, аналитической геометрии и других областей «детерминированной» математики. Наряду с этим широко используется аппарат теории вероятностей и математической статистики для оценки случайных составляющих погрешности измерений.

На сегодняшний день можно признать существование объективно сложившихся теоретических основ в следующих областях измерений:

· физические измерения в макромире (включая технические измерения);

· квантово-механические измерения;

· психологические измерения;

· кибернетические измерения;

· математические измерения.

Математические измерения основаны на допущении "идеальных измерений", результаты которых свободны от погрешностей. Кроме того, изучение измерения как некоторого способа (алгоритма) получения числового результата привело к разработке "алгоритмической теории измерения".

15. Понятие о прямых и косвенных измерениях

Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Математическая обработка результатов измерений - student2.ru , где Математическая обработка результатов измерений - student2.ru - искомое значение измеряемой величины, а Математическая обработка результатов измерений - student2.ru - значение, непосредственно получаемое из опытных данных.
При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др.
Косвенные - это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят путем вычисления по формуле Математическая обработка результатов измерений - student2.ru , где Математическая обработка результатов измерений - student2.ru - функциональная зависимость, которая заранее известна, Математическая обработка результатов измерений - student2.ru - значения величин, измеренных прямым способом.
Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.
Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль их особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического или внутриатомного порядка.



Наши рекомендации