Доверительные границы погрешности измерения
И доверительная вероятность
Предположим, что при многократном измерении физической величины в эксперименте получено её значений Будем считать, что все измерения выполнены с одинаковой тщательностью и по одной и той же методике. Нашей задачей является нахождение: среднего арифметического значения измеряемой величины; доверительных границ погрешности результата измерений при заданном значении доверительной вероятности.
Как указывалось выше, в качестве истинного значения измеряемой величины следует принять её среднее арифметическое значение . В этом случае значение лежит в некоторых пределах вблизи . Нужно найти этот интервал, в пределах которого с заданной вероятностью можно обнаружить значение определяемой величины . Для этого задают некоторую вероятность , близкую к 1. После чего определяют для нее нижнюю границу интервала и верхнюю границу интервала , внутри которого должно находиться значение определяемой величины, (см. рис. 1).
Интервал здесь и дает доверительные границы погрешности, определяя верхнюю и нижнюю границу интервала, внутри которого с заданной вероятностью находится значение измеряемой величины .
Вероятность называют доверительной вероятностью.
Рис. 1 Пояснения к терминам
Окончательный результат измерений записывается в виде
Приведенную запись следует понимать так: существует определенная степень уверенности в том, что значение измеряемой величины находится в пределах рассчитанного интервала от до . Равенство доверительной вероятности значению означает, что при проведении большого количества измерений, в 95 % случаев ( результаты измерений физической величины, выполненные с одинаковой тщательностью и на одном и том же оборудовании, попадут внутрь доверительного интервала.
Обратите внимание на то, что для расчета доверительных границ погрешности (без учета знака) доверительную вероятность принимают равной 0,95. Однако в особых случаях, если не удается повторить измерения при неизменных условиях опыта, или если результаты опыта имеют отношение к здоровью людей, допускается применять доверительную вероятность равную 0,99.
Пример – Результат измерения штангенциркулем диаметра цилиндра представлен в виде
. |
Эта запись подразумевает, что в результате проведения некоторого числа замеров диаметра цилиндра, среднее арифметическое значение величины равно мм. Доверительные границы погрешности мм, а измеренное значение диаметра лежит в диапазоне от до мм. Такой результат отвечает доверительной вероятности . Последний факт означает, что в 95% случаев результаты измерений диаметра при любом количестве последующих его замеров тем же инструментом, будут находиться внутри интервала от до мм.
В предыдущем примере погрешность измерения выражалась в тех же единицах, что и сама измеряемая величина. Такая запись выражает результат в абсолютной форме.
Абсолютная погрешность: погрешность измерения, выраженная в единицах измеряемой величины.
Однако погрешность может быть выражена и в относительной форме.
Относительная погрешность: погрешность измерения, выраженная отношением абсолютной погрешности к истинному значению, в качестве которого принимают среднее арифметическое значение . Границы относительной погрешности в долях или процентах находят из соотношений
или . | |
Пример – Используем предыдущий пример, результаты которого были представлены в виде: .
Здесь доверительные границы абсолютной погрешности мм, а относительная погрешность , или 0,26%.