Свойства случайных погрешностей

Любые измерения сопровождаются неизбежными погрешностями. Результаты геодезических измерений могут иметь погрешности трех видов: грубые, систематические и случайные.

Грубые погрешности получаются в результате просчетов и промахов при измерениях. Например, вместо правильного результата по мерной ленте 11 м при измерении остатка ошибочно можно отсчитать расстояние 9 м, если лента уложена в обратном направлении. Грубые погрешности обнаруживаются повторными измерениями. Поэтому контрольные измерения являются необходимыми для исключения грубых погрешностей.

Систематические погрешности имеют объективный характер и при измерениях их можно учесть путем введения поправок в результаты измерений. Источником систематических погрешностей являются неисправности в применяемых геодезических приборах и инструментах, их неточная установка при измерениях, влияние внешних факторов и т. д. Например, если при номинальной длине ленты в 20 м из результатов компарирования оказалось, что ее длина равна 20,03 м. Тогда при измерении этой лентой расстояния в 100 м мы допустим погрешность в 0,03 × 5 = 0,15 м. Поэтому в результат измерения необходимо ввести поправку за компарирование ленты.

Случайными погрешностями называют такие погрешности, размер и характер влияния которых на каждый отдельный результат измерения остается неизвестным. Величину и знак случайных погрешностей заранее установить нельзя. Они неизбежны и сопровождают каждое измерение, так как измерение мы проводим только с такой точностью, которую можно достичь применяемыми при этом приборами. Избавить результаты измерений от случайных погрешностей полностью нельзя. Но на основании изучения их свойств можно вывести правила, как из ряда измерений получить наиболее надежные результаты и оценивать их точность. Этими вопросами занимается теория погрешностей измерений.

В теории погрешностей различают равноточные и неравноточные измерения. Равноточными называют измерения, выполненные в одинаковых условиях, приборами одинаковой точности, одинаковое число раз, наблюдателями одинаковой квалификации. Если одно из этих условий не соблюдается, то такие измерения будут неравноточными.

Свойства случайных погрешностей. Случайные погрешности можно определить как разность между измеренными и истинными значениями одной и той же величины. На основании теоретического и практического изучения многих рядов случайных погрешностей выведены их общие свойства:

1 При данных условиях случайные погрешности не могут превышать определенного предела.

2 Одинаковые по абсолютной величине положительные и отрицательные погрешности равновозможны.

3 Меньшие по абсолютной величине погрешности встречаются чаще, чем большие.

4 Среднее арифметическое из случайных погрешностей равноточных измерений одной и той же величины имеет тенденцию стремится к нулю при неограниченном увеличении числа измерений.

Принцип арифметической середины

Пусть произведены равноточные измерения l1, l2, … , ln одной и той же величины, истинное значение которой Х. Тогда можно вычислить n значений случайных погрешностей:

Δ1 = l1 – X;

Δ2 = l2 – X; (4.1)

………….

Δn = ln – X.

Складывая левые и правые части этих равенств, получим

Δ1 + Δ2 +…+ Δn = l1 + l2 +…+ ln – nX. (4.2)

В теории погрешности принято обозначать сумму величин через квадратные скобки, например:

Δ1 + Δ2 + … + Δn = [Δ]; l1 + l2 + … + ln = [l] и т. д.

При этих обозначениях равенство (4.2) примет вид

[Δ] = [l] – nX , откуда X = [l] / n – [Δ] / n. (4.3)

Согласно четвертому свойству случайных погрешностей величина [Δ] / n в равенстве (4.3) при неограниченном возрастании числа измерений стремится к нулю. Следовательно, величина [l] / n при этих условиях будет приближаться к истинному значению Х. На основании этого арифметическую середину (среднее арифметическое из результатов измерений) принято считать наиболее надежным или вероятнейшим результатом из равноточных измерений одной и той же величины при любом числе измерений.

L = [l] / n = (l1 + l2 + l3 + … + ln) / n. (4.4)

Средняя квадратическая погрешность одного измерения.

Формулы Гаусса и Бесселя

В теории погрешностей точность измерений характеризуется средней квадратической погрешностью, которая была введена знаменитым немецким математиком и геодезистом К. Ф. Гауссом (1777–1855 гг.) и обозначается через m:

______________________ ______

m = ± √ (Δ12 + Δ22 + .. + Δn2) / n = ± √ [Δ2] / n, (4.5)

где Δ1, Δ2, …, Δn – случайные погрешности;

n – число измерений.

Средняя квадратическая погрешность является надежным критерием для оценки точности измерений. Она даже при небольшом числе измерений достаточно устойчива и хорошо отражает наличие крупных случайных ошибок, которые по существу и определяют качество измерений.

Формула (4.5) применена для вычисления средней квадратической погрешности, когда известно истинное значение измеряемой величины. Эти случаи в практике весьма редки. Как правило, истинное значение измеряемой величины неизвестно, но из измерений можно получить наиболее надежный результат – арифметическую середину. Получим формулу для вычисления средней квадратической погрешности при помощи уклонения отдельных результатов от арифметической середины по так называемым вероятнейшим погрешностям V.

Пусть l1, l2, …, ln – результаты равноточных измерений одной и той же величины, истинное значение которой Х, а арифметическая середина – L. Тогда можно вычислить n случайных или истинных погрешностей

Δi = li – X (4.6)

и n вероятнейших погрешностей

Vi = li – L. (4.7)

Сумма n равенству (4.7)

[V] = [l] – nL. (4.8)

Но, согласно равенству (4.4) nL = [l], поэтому

[V] = 0, (4.9)

т. е. сумма вероятнейших погрешностей всегда должна быть равна нулю.

Вычитая из равенства (4.6) равенство (4.7), получим

Δi – Vi = L – X. (4.10)

В правой части равенству (4.10) мы имеем случайную погрешность арифметической середины. Обозначим ее через ε. Тогда

Δi = Vi + ε. (4.11)

Возведем в квадрат равенство (4.11), возьмем их сумму и разделим ее на n:

2] / n = [V2] / n + nε2 / n + 2ε[V] / n. (4.12)

Левая часть этого равенства есть не что иное как m2. Последнее слагаемое правой части ввиду равенства (4.9) равно нулю.

m2 = [V2] / n + ε2. (4.13)

Случайную погрешность ε заменим ее средним значением, т. е. средней квадратической погрешностью арифметической середины. Ниже будет доказано, что средняя квадратическая погрешность арифметической середины

М 2 = ε 2 = m 2/ n. (4.14)

Тогда

m 2 – m2 / n = [V 2] / n или m 2(n – 1) / n = [V 2] / n,

откуда ___________

m 2 = [V 2] / (n – 1), или m = √ [V 2] / (n – 1). (4.15)

Формула (4.15) называется формулой Бесселя и имеет большое практическое значение. Она позволяет вычислять среднюю квадратическую погрешность по вероятнейшим уклонениям результатов измерений от арифметической средины.

Кроме средней квадратической погрешности различают еще среднюю, вероятную и относительную погрешности.

Средней погрешностью (Θ) называют среднее арифметическое из абсолютных значений случайных погрешностей т. е.

Θ = (|Δ1| + |Δ2| + … + |Δn| ) / n = [|Δ|] / n. (4.16)

В теории погрешности доказывается, что при n → ∞ Θ = 0,8 m, или m = 1,25Θ.

Иногда в прикладных вопросах пользуются вероятной погрешностью r. Вероятной погрешностью называют такое значение случайной погрешности в одном ряду равноточных измерений, по отношению к которой одинаково возможна погрешность как больше, так и меньше этого значения, по абсолютной величине. Для нахождения r все погрешности данного ряда располагают в порядке возрастания по абсолютной величине и выбирают то значение, которое занимает среднее положение, т. е. погрешностей меньше его столько же, сколько и больше. Вероятная погрешность связана со средней квадратической погрешностью соотношением r = 2/3 m = 0,67 m или m = 1,5 r.

Как видно, m > Θ и m > r, что показывает, что средняя квадратическая погрешность лучше характеризует точность измерений, чем средняя и вероятная погрешности.

Оценку точности таких измеренных величин, как линии, площади и объемы часто производят с помощью относительной погрешности. Относительной погрешностью называют отношение абсолютной погрешности к значению измеренной величины. Относительная погрешность записывается в виде дроби, в числителе которой стоит единица, а в знаменателе – число, показывающее какую долю измеряемой величины должна составлять допустимая погрешность. Например, длина стороны D = 150 м измерена с абсолютной погрешностью md = 0,05 м. Тогда относительная погрешность результата измерения составит md / D = 0,05 м / 150 м = 1 / 3000.

Величина 1 / 3000 означает, что на 3000 м расстояния может быть допущена погрешность в 1 м. Чем больше знаменатель относительной погрешности, тем выше точность измерений. Точность всех линейных измерений в геодезии всегда задается относительной погрешностью, которая приводится в соответствующих инструкциях и наставлениях по производству данного вида геодезических работ.

Наши рекомендации