Раздел № 8 Измерение электромагнитных величин.
Магнитные измерения составляют неотъемлемую часть всей электроизмерительной техники. При этом удельный вес магнитных измерений среди других непрерывно возрастает. Объясняется это все более широким использованием магнитных явлений в науке и технике, значительным ростом выпуска ферромагнитных материалов (ФММ) и применением их в электротехнических устройствах, приборах и автоматике.
В основе классификации методов магнитных измерений лежит физическая сущность явлений, используемых для измерительного процесса, т.е. преобразование магнитной величины в электрический сигнал.
В связи с этим различают индукционные методы измерения магнитных величин; методы, основанные на взаимодействии двух магнитных полей; методы, основанные на влиянии магнитного поля на физические свойства веществ.
Методы измерения магнитных величин лежат в основе испытаний магнитных материалов. Все ферромагнитные материалы делятся на магнитно-твёрдые (МТМ) и магнитно-мягкие (МММ). Первые используются в качестве источников постоянных магнитных полей (постоянные магниты ПМ). Для них к настоящему времени сложились три направления испытаний: исследование свойств МТМ, производственный контроль образцов МТМ, производственный контроль постоянных магнитов. При исследовании свойств МТМ необходимо получать достаточно полную информацию о свойствах материала: начальная кривая намагничивания, предельная петля магнитного гистерезиса, кривые возврата для различных точек размагничивающего участка и др. Измерение индукции производится, как правило, индукционными и гальваномагнитными преобразователями. Измерение напряжённости поля обычно сводится к измерению тока в намагничивающих устройствах или получению информации о тангенциальной составляющей напряжённости поля от индукционных или гальваномагнитных преобразователей. Перемагничивание МТМ может быть осуществлено постоянным и переменным полем. При намагничивании материала постоянным полем получаются статические характеристики. При непрерывном циклическом изменении поля получаются динамические характеристики, которые в инфранизком диапазоне частот перемагничивания могут быть приближены к статическим с необходимой точностью.
Для обеспечения правильности процесса производства МТМ и соответствующей коррекции технологического режима контролируются наиболее важные отдельные параметры материала, в частности, коэрцитивная сила Нс. Алгоритм получения Нс сводится к фиксации нулевых значений магнитной индукции или намагниченности и отсчёту напряжённости поля.
В основе классификационных признаков контроля постоянных магнитов лежат вид контролируемых параметров, способ получения информации. Различают контроль по магнитному потоку в системе, близкой к рабочей; контроль по размагничивающему участку. По способу, получения выходной информации различают устройства с непосредственным отсчётом и дифференциальным способом измерения - получением информации в виде разности характеристик образцового и испытуемого ПМ.
Магнитно-мягкие материалы характеризуются магнитными параметрами, измеряемыми в постоянном и переменном полях. Основными измеряемыми характеристиками, в постоянных полях для МММ являются: основные кривая намагничивания, предельная петля гистерезиса и её параметры (Вг Нс), начальная и максимальная магнитные проницаемости. ГОСТ 8.377 – 80 устанавливает в качестве основного баллистический метод исследования свойств материала. В настоящее время в связи с разработкой промышленностью унифицированных электронных устройств широкого применения получил распространение метод непрерывного медленно изменяющего поля.
В переменных полях основными характеристиками МММ являются основная динамическая кривая намагничивания, динамическая петля гистерезиса, комплексная магнитная проницаемость и удельные потери. Кроме того, в зависимости от частотного диапазона испытания существует ещё целый ряд определяемых характеристик и параметров. Наиболее часты испытания МММ в частотном диапазоне 50 Гц - 10 кГц. Основными методами испытания в этом диапазоне частот являются: индукционный с использованием амперметра, вольтметра, ваттметра; индукционный с использованием фазочувствительных приборов (феррометрический); индукционный с использованием потенциометра переменного тока; индукционный с использованием феррографа (осциллографический); индукционный с использованием стробоскопических преобразователей; параметрический (мостовой).
Индукционные методы характеризуются измерением ЭДС, индуктированных в измерительных катушках. Использование амперметра и вольтметра даёт возможность определения динамической относительной проницаемости. Являясь наиболее простым, этот способ измерения обладает большой погрешностью (до 10 %) и не обеспечивает возможности определение потерь в образцах. Использование ваттметра стандартизировано для определения потерь в образцах из МММ.
Преимуществами ваттметрового способа являются простота и высокая производительность, сравнительно небольшая для промышленных испытаний погрешность измерения (5 - 8 %), широкий частотный диапазон испытания (до 10 кГц). К недостаткам следует отнести малый объём информации и увеличения погрешности при перемагничивании до индукции свыше 1,2 Тл из - за отклонения формы кривой от синусоидальной формы.
В основу феррометрического способа измерения положено определение мгновенных значений периодических несинусоидальных величин с помощью фазочувствительных приборов. Связь среднего значения производной функции и мгновенного значения самой функции является здесь основой использования инерционных приборов для регистрации динамических характеристик МММ.
К преимуществам феррометрического способа измерения относятся:
- малая погрешность (2 - 5 %);
- возможность определения большого числа магнитных характеристик, в том числе и расчёта потерь.
Недостатками способа являются ограниченность размеров образцов и частотного диапазона; длительность процесса измерений и обработки результатов; относительно высокая стоимость устройств.
Осциллографическим способом пользуются для измерения и визуального наблюдения основной динамической кривой намагничивания, семейства симметричных петель гистерезиса, потерь в образцах на частотах от 50 до 500 Гц. К недостаткам способа следует отнести необходимость замеров на экране осциллографа, что связано с увеличением объективных и субъективных погрешностей отсчёта.
Наиболее точным из индукционных методов испытания МММ является потенциометрический, основанный на измерении сигналов, пропорциональных В и Н, с помощью потенциометров переменного тока. Этим способом определяются зависимость магнитной индукции от напряжённости магнитного поля, составляющие комплексной магнитной проницаемости, полные потери. Достоинствами способа являются высокая точность измерения и широкий диапазон измеряемых величин. К недостаткам относятся: длительность процесса измерения, высокая стоимость используемой аппаратуры и её сложность.
Сущность стробоскопического способа измерения заключается в том, что исследуемые периодически изменяющиеся сигналы произвольной формы умножаются на так называемый строб-импульс. При этом перемножение в каждом последующем периоде происходит со сдвигом во времени на некоторый интервал (шаг считывания) по отношению к предыдущему. В результате можно произвести и затем воспроизвести считывание всего периода исследуемого сигнала по точкам. Это даёт возможность подобно феррометрическому способу использования для регистрации быстроизменяющихся процессов инерционных самопишущих и цифропечатающих приборов. Основным достоинством стробоскопического способа измерения является возможность получения документальной информации о характеристиках ФММ в процессе перемагничивания последних.
Параметрический метод испытания магнитных материалов заключается в определении индуктивности и сопротивления катушки с испытуемым магнитопроводом путём уравновешивания мостовой схемы. В основном этот метод предназначен для определения характеристик в области слабых полей. Преимуществами его являются: высокая точность измерения, широкий частотный диапазон испытания. К недостаткам относятся: зависимость результатов измерения от индуктивных и емкостных помех, создаваемых элементами схемы измерения; увеличение погрешности на низких частотах испытания; сложность и длительность процесса испытания.
Существуют и другие методы испытания МММ в динамическом режиме перемагничивания, однако технико-эксплуатационные характеристики устройств на их основе не эффективны в условиях массовых испытаний.
В данном разделе применена одна лабораторная работа с использованием осциллографа, поэтому все остальные методы только упоминаются эскизно.
Изучение частот колебаний также касается и измерений магнитных материалов, поэтому из этого раздела необходимо заимствовать сведения для разделов 7, 9, 10 и, следовательно, наоборот, из разделов 7, 9, 10 в раздел 8.
Для организации лабораторных работ по разделу № 8 измерения электромагнитных величин на кафедру МСиС ТФ ГОУ ОГУ приобретена лабораторная установка «Методы измерения электрических величин МСИ 6», - паспорт МСИ 6 ПС от Министерства образования РФ ФГО ООО «ИНТОС+» заводской № 009 по ТУ 9.461 – 2004 дата изготовления и упакована для отправки в ГОУ ОГУ на кафедру МСиС ТФ 15.09 2008 года:
1 Назначение
Установка лабораторная «Методы измерения частоты МСИ 6» (далее –установка) является частью учебно – лабораторного комплекса, используемого для проведения лабораторных работ при изучении дисциплины «Методы и средства измерений, испытаний и контроля» для специальности 200503 – Стандартизация и сертификация и 220501 – Управление качеством.
Установка должна эксплуатироваться в помещениях при температуре воздуха от+ 10°Сдо + 35°С, относительной влажности воздуха до 80 % при 25 ° С.
2 Основные технические данные
Установка предназначена для формирования частот заданного спектра в электрической и оптической формах, измерение частоты промышленными приборами
220 ± 22 50 ± 0, 4 не более 5 |
2.1 Питание от сети переменного тока:
- напряжением, В
- частотой, Гц
Потребляемая мощность, В А
2.2 Характеристики
5,0 ±0,5 1,0±0,1 5, 0 ±1,0 0, 5 ± 0, 2 не более 200 не более 150 не более 100 не более 1,0 не менее 1000 |
2.2.1 Максимальное значение формируемой
частоты, кГц
2.2.2 Минимальное значение формируемой
частоты, кГц
2.2.3 Максимальное значение напряжения
электрического сигнала, В
2.2.4Минимальное значение напряжения
электрического сигнала, В
2.5 Габаритные размеры установки, мм
длина
ширина
высота
2.6 Масса установки, кг
2.7Средняя наработка до отказа, ч
2.8 Средний срок службы до списания, лет