Что такое нормальное распределение и почему оно играет особую роль в метрологии?

Наибольшее распространение получил нормальный закон распределения, называемый часто распределением Гаусса:

Что такое нормальное распределение и почему оно играет особую роль в метрологии? - student2.ru (6.6)

где s — параметр рассеивания распределения, равный СКО; Хц — центр распределения, равный МО. Вид нормального распределения показан на рис. 6.3.

Что такое нормальное распределение и почему оно играет особую роль в метрологии? - student2.ru

Рис. 6.6. Экспоненциальные распределения, определяемые по

формуле (6.5) при sl = 1 и Хц = 0

Широкое использование нормального распределения на практике объясняется центральной предельной георемой теории вероятностей [48, 49], утверждающей, что распределение случайных погрешностей будет близко к нормальному всякий раз, когда результаты наблюдений формируются под действием большого числа независимо действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

Вид экспоненциальных распределений при различных значениях показателя а приведен на рис. 6.6.

При введении новой переменной t = (х-Хц)/s из (6.6) получается нормированное нормальное распределение, интегральная и дифференциальная функции которого соответственно равны:

Что такое нормальное распределение и почему оно играет особую роль в метрологии? - student2.ru

Нормирование приводит к переносу начала координат в центр распределения и выражению абсциссы в долях СКО. Значения интегральной и дифференциальной функций нормированного нормального распределения сведены в таблицы, которые можно найти в литературе по теории вероятностей [48, 49].

Определенный интеграл с переменным верхним пределом

Что такое нормальное распределение и почему оно играет особую роль в метрологии? - student2.ru (6.7)

называют функцией Лапласа. Для нее справедливы следующие равенства: Ф(- ¥) = - ,5; Ф(0) = 0; Ф(+ ¥) = 0,5; Ф(t) = -Ф(t). Функция Лапласа используется для определения значений интегральных функций нормальных распределений. Функция F(t) связана с функцией Лапласа формулой F(t) = 0,5 + Ф(t). Поскольку интеграл в (6.7) не выражается через элементарные функции, то значения функции Лапласа для различных значений t сведены в таблицу

31. что такое доверительный интервал и каковы способы его задания?

Доверительным называется интервал, который с заданной надежностью покрывает оцениваемый параметр.

Рассмотренные точечные оценки параметров распределения дают оценку в виде числа, наиболее близкого к значению неизвестного параметра. Такие оценки используют только при большом числе измерений. Чем меньше объем выборки, тем легче допустить ошибку при выборе параметра. Для практики важно не только получить точечную оценку, но и определить интервал, называемый доверительным, между границами которого с заданной дове рителъной вероятностью

Что такое нормальное распределение и почему оно играет особую роль в метрологии? - student2.ru

где q — уровень значимости; хн, хв— нижняя и верхняя границы интервала, находится истинное значение оцениваемого параметра.

В общем случае доверительные интервалы можно строить на основе неравенства Чебышева. При любом законе распределения случайной величины, обладающей моментами первых двух порядков, верхняя граница вероятности попадания отклонения случайной величины х от центра распределения Хц в интервал tSx описывается неравенством Чебышева

Что такое нормальное распределение и почему оно играет особую роль в метрологии? - student2.ru

где Sx — оценка СКО распределения; t — положительное число.

Для нахождения доверительного интервала не требуется знать закон распределения результатов наблюдений, но нужно знать оценку СКО. Полученные с помощью неравенства Чебышева интервалы оказываются слишком широкими для практики. Так, доверительной вероятности 0,9 для многих законов распределений соответствует доверительный интервал 1,6SX. Неравенство Чебышева дает в данном случае 3,16SX. В связи с этим оно не получило широкого распространения.

В метрологической практике используют главным образом кван-тильные оценки доверительного интервала. Под 100P-процентным квантилем хр понимают абсциссу такой вертикальной линии, слева от которой площадь под кривой плотности распределения равна Р%. Иначе говоря, квантиль — это значение случайной величины (погрешности) с заданной доверительной вероятностью Р. Например, медиана распределения является 50%-ным квантилем х0,5.

На практике 25- и 75%-ный квантили принято называть сгибами, или квантилями распределения. Между ними заключено 50% всех возможных значений случайной величины, а остальные 50% лежат вне их. Интервал значений случайной величины х между х0 05 и х0 95 охватывает 90% всех ее возможных значений и называется интерквантильным промежутком с 90%-ной вероятностью. Его протяженность равна d0,9= х0,95 - х0,05.

На основании такого подхода вводится понятие квантильных значений погрешности, т.е. значений погрешности с заданной доверительной вероятностью Р — границ интервала неопределенности ± DД = ± (хр - х1-р)/2 = ± dp/2. На его протяженности встречается Р% значений случайной величины (погрешности), a q = (1- Р)% общего их числа остаются за пределами этого интервала.

Для получения интервальной оценки нормально распределенной случайной величины необходимо:

• определить точечную оценку МО х̅ и СКО Sx случайной величины по формулам (6.8) и (6.11) соответственно;

• выбрать доверительную вероятность Р из рекомендуемого ряда значений 0,90; 0,95; 0,99;

• найти верхнюю хв и нижнюю хн границы в соответствии с уравнениями

Что такое нормальное распределение и почему оно играет особую роль в метрологии? - student2.ru

полученными с учетом (6.1). Значения хн и хв определяются из таблиц значений интегральной функции распределения F(t) или функции Лапласа Ф(1).

Полученный доверительный интервал удовлетворяет условию

Что такое нормальное распределение и почему оно играет особую роль в метрологии? - student2.ru (6.13)

где n — число измеренных значений; zp — аргумент функции Лапласа Ф(1), отвечающей вероятности Р/2. В данном случае zp называется квантильным множителем. Половина длины доверительного интервала Что такое нормальное распределение и почему оно играет особую роль в метрологии? - student2.ru называется доверительной границей погрешности результата измерений.

Наши рекомендации