Типы кристаллических решеток металлов

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой

Диаграмма состояния для двухкомпонентной системы, компоненты в которой образуют ограниченные твердые растворы, при этом в зависимости от типа диаграммы, диаграммы подразделяются на диаграммы с эвтектикой и диаграммы с перитектикой.

Диаграммы с эвтектикой: компоненты А и В. Фазы: жидкость ,;- твердый раствор компонента В в компоненте А; - твердый раствор компонента А в компоненте В.

Линия АВС – ликвидус. ADCFB – солидус, т.к. компоненты вступают во взаимодействие в твердом состоянии с правой и с левой стороны диаграммы будут находиться так называемые области ограниченной растворимости.

Линия ДК- указывает на то, что растворимость компонента В в А увеличивается с повышением температуры. Растворимость В в А при комп. Температуре будет соответственна на диаграммы. При температуре плавления эвтектики точка Д на диаграмме. Противоположность растворимость компонента А в В не изменяется (линия FL) при комнатной температуре растворимость компонента А в В соответственна точке L при температуре плавления эвтектики в точке L. Горизонтальная линия DCF соответствует температуре, при которой происходит эвтектическая реакция.

Эвтектика – это механическая смесь двух или более фаз одновременно кристаллизующихся из жидкости. В точке С происходит чисто эвтектическая реакция, которая записывается как жидкость точки С распадается на  - твердый раствор точки Д и  - в точке F.

Кривые охлаждения.

С=К-Ф+1

С0-1=2-1+1=2 С1-2=2-2+1=1

Диаграмма с перлитом.

Компоненты А,В, жидкост, ,.

В отличие от эвтектической реакции при перитектической реакции жидкость взаимодействует с кристаллами выпавшей фазы с образованием кристаллов новой фазы.

Типы кристаллических решеток металлов - student2.ru

Диаграммы состояния и зависимость свойств от состава для случаев: а), б) неограниченной растворимости компонентов в твердом состоянии;

в), г) отсутствия растворимости компонентов в твердом состоянии; д), е) ограниченной растворимости компонентов в твердом состоянии

Для систем сплавов с ограниченной растворимостью характерны диаграммы состояния, показанные на рис. д). В таких системах имеются две области существования фаз, представляющих раствор одного компонента в другом, и область существования смеси двух фаз. При составах, соответствующих областям существования твердых растворов на основе какого-либо компонента, изменения свойств аналогично изменению свойств в системах с неограниченной растворимостью компонентов, а в областях составов, соответствующих двухфазным смесям, изменение состава ведет к изменению свойств, характерному для систем с нерастворимыми в твердом состоянии компонентами

Билет №25.

Билет 19

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

1. Вычертите диаграмму состояния с нерастворимостью компонентов в твердом состоянии эвтектикой

  Тпл, °С Плотность, г/см Тэвт, °С Точка эвт.
А 2,7 В=23% вес.
В 5,5  

3. Вычертите диаграмму состояния с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой

  Тпл, °С р, г/см3 Тэвт, °С Точка эвтектики Растворимость ТЭВТ ТК
А В=35% вес.
В  

Определите массу компонентов в твердом растворе а состава (5%), если масса сплава 500 г.

5. Вычертите диаграмму состояния с ограниченной растворимостью компонентов в твердом состоянии иперитектикой

  Тпл, °С р, г/см3 Тп,°С Точка эвтектики Растворимость Тп ТК
А 2,7 В=35% вес.
В 5,5  

7. Определите массу железа и углерода в сером чугуне эвтектического состава, если масса сплава 2000 г. Плотность Fe - 7,8 г/см3, С - 2,5 г/см3

9. Определите массу аустенита и цементита в белом чугуне эвтектического состава при температуре эвтектики, если масса сплава 1000 г. Плотность Fe - 7,8 г/см3, С - 2,5 г/см3

11.Определите массу цементита и феррита в стали эвтектоидного состава, если масса сплава 200 г. Плотность Fe 7,8 г/см3, С - 2,5 г/см3. Считать, что в феррите углерод не содержится.

13.Определите плотность ледебурита в белом чугуне эвтектического состава, если масса сплава 1000г. Плотность Fe - 7,8 г/см3, С - 2,5 г/см3.

15.Вычертите диаграмму состояния с нерастворимостью компонентов в твердом состоянии и эвтектикой



  Тпл, °С р, г/см Тэвт, °С Точка эвтектики
А 3,7 В=25%вес.
В 5,3  

Определите массу компонентов в сплаве состава 10% В, если масса сплава 500 г.

17.Вычертите диаграмму состояния с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой

  Тпл, °С Типы кристаллических решеток металлов - student2.ru , г/см Тэвт, °С Точка эвтектики Растворимость ТЭВТ ТК
А 8,7 В=25% вес.
В 5,3  

Определите плотность твердых растворов при комнатной температуре.

19.Определить массу компонентов и плотность сплава Al-Si эвтектического состава (12% вес. Si),. если плотность А1 - 2,7 г/см3, Si - 5 г/см3

21.Вычертите диаграмму состояния с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой

  Тпл, °С Типы кристаллических решеток металлов - student2.ru , г/см3 Тэвт, °С Точка эвтектики Растворимость ТЭВТ ТК
А 800, 7,7 В=45% вес.
В 10,3  

Определите плотность твердых растворов при комнатной температуре.

23.Вычертите диаграмму состояния с неограниченной растворимостью компонентов в твердом состоянии. Определите плотность сплава состава 45% В при комнатной температуре. Масса сплава 1000 г. Типы кристаллических решеток металлов - student2.ru А=78,7 г/см3, Типы кристаллических решеток металлов - student2.ru В=9,8 г/см3

25.Определить массу цементита и аустенита в 1 кг белого чугуна, содержащего 5% С. Плотность Fe =7,8 г/см3, С =2,5 г/см3

27.Определить массу цементита и аустенита в 2 кг белого чугуна, содержащего 3% С. Плотность Fe =7,8 r/см3, С =2,5 г/см3

29.Определить массу ледебурита и аустенита при температуре 1147°С в 1 кг белого чугуна, содержащего 2,5% С. Плотность Fe =7,8 г/см3, С =2,5 г/см3

31.Определить массу цементита в 500 г белого чугуна, содержащего 6% С. Плотность Fe =7,8 г/см3, С =2,5 г/см3

33.Определить массу аустенита в 1 кг белого чугуна, содержащего 5% С. Плотность Fe =7,8 г/см3, С =2,5 г/см3

35.Определить массу цементита в 1 кг стали У10. Плотность Fe =7,8 г/см3, С =2,5 г/см3

37.Определить массу цементита в 1 кг стали У7. Плотность Fe =7,8 г/см3, С =2,5 г/см3

39.Определить массу феррита в 1 кг стали 55. Плотность Fe =7,8 г/см3, С =2,5 г/см3

41.Определить массу цементита в 1 кг стали У8. Плотность Fe =7,8 г/см3, С =2,5 г/см3

43.Вычертите диаграмму состояния с неограниченной растворимостью компонентов в твердом состоянии.

Определить массу компонентов в 1 кг сплава, содержащего 55% В. Плотность А =8,1 г/см3, В =7,8 г/см3

49.Расшифруйте состав стали ШХ20 (среднее содержание элементов), укажите, к какому классу она относится.

47.Определить массу цементита в 1 кг белого чугуна, содержащего 3% С. Плотность Fe =7,8 г/см3, С =2,5г/см3

45.Определить массу титана и алюминия в 1 кг сплава (твердого раствора), содержащего 5% А1. Плотность Ti =4,5 г/см3, Аl =2,7 г/см3

Типы кристаллических решеток металлов

Для большинства металлов характерны следующие типы кристаллических решеток: объемно-центрированная кубическая (ОЦК); гранецентрированная кубическая (ГЦК); гексагональная плотноупакованная (ГПУ). Основные типы кристаллических решеток представлены на рис. 2.4. В объемно-центрированной кубической решетке (рис. 2.4, а) атомы расположены в углах и центре куба. Период решетки равен а, координационное число К= 8, базис решетки равен 2; 8 атомов расположены в углах куба, 1 атом в центре куба принадлежит только одной ячейке). Данный тип решетки имеют металлы К, Na, Li, Та, W, Mo, Fea, Cr, Nb и др.

В гранецентрированной кубической решетке (рис. 2.4, б) атомы расположены в углах куба и центрах его граней. Эта решетка характеризуется периодом а, координационном числом К= 12, базисом, равным 4: (1/8) • 8 + ½ • 6 = 4; 8 атомов в углах куба и 6 атомов в центрах граней, каждый из которых принадлежит двум элементарным ячейкам. Кубическую гранецентрированную решетку имеют следующие металлы: Са, Pb, Ni, Ag, Au, Pt, FeY и др.

В гексагональной плотноупакованной решетке (рис. 2.4, в) атомы расположены в вершинах и центрах шестигранных оснований призмы, кроме того, три атома находятся в средней плоскости призмы. Периоды решетки — а и с, причем с/а > 1 (например, с/а = 1,633 для Ru, Cd и с/а > 1,633 для Mg, Zn), координационное число К= 12, базис решетки равен 6.

Типы кристаллических решеток металлов - student2.ru

3) Анизотропия кристаллов и изотропия кристаллических тел. В кристаллических решетках атомная плотность по различным плоскостям неодинакова — на единицу площади разных атомных плоскостей приходится неодинаковое количество атомов. Сравним, например, для ОЦК решетки количество атомов в плоскости, совпадающей с гранью, и диагональной. Вследствие этого свойства в различных плоскостях и направлениях кристаллической решетки будут неодинаковыми. Различие свойств по разным кристаллографическим направлениям называется анизотропией кристалла.

Полиморфизм. Для ряда металлов характерно явление полиморфизма. Этим термином называют способность вещества формировать различные типы кристаллических решеток. Так, при разных температурах железо может иметь ОЦК или ГЦК решетку, кобальт — ГЦК или ГПУ решетку. Полиморфизм характерен и для других металлов. Различные кристаллические формы одного и того же вещества называются полиморфными или аллотропными модификациями

4) Типы кристаллических решеток металлов - student2.ru

5) Строение металлических сплавов. Под металлическим сплавом понимают вещество, получаемое сплавлением двух или более элементов с характерными металлическими свойствами. Металлические сплавы получают сплавлением элементов-металлов или металлов с неметаллами при преимущественном содержании металлов. Строение сплавов сложнее, чем чистых металлов.

Типы кристаллических решеток металлов - student2.ru

6) Типы кристаллических решеток металлов - student2.ru

Типы кристаллических решеток металлов - student2.ru

Типы кристаллических решеток металлов - student2.ru

9) Диаграмма состояния сплавов для случая неограниченной растворимости компонентов в твердом состоянии.Рассмотрим диаграмму состояния сплавов системы медь - никель (рис. 14). Медь и никель, соединяясь в любых пропорциях, образуют непрерывный ряд твердых растворов, так как атомы никеля способны заместить в кристаллической решетке все атомы меди. Температура плавления меди составляет 1083°С, никеля 1445°С.

Рассмотрим кривые охлаждения (рис. 14, а) сплавов системы медь-никель для пяти составов следующей концентрации, %: lOOCu, 80Cu+20Ni, 60Cu+40Ni, 20Cu+80Ni, lOONi. Чистые металлы (кривые 1 и 5) имеют одну критическую точку - температуру затвердевания (кристаллизации), а сплавы (кривые 2, 3, 4) - две, т. е. сплавы в отличие от чистых металлов кристаллизуются в интервале температур. Например, кристаллизация сплава 3 начинается при температуре t1 (точка a1), при этой температуре из жидкого сплава начинают выпадать первые кристаллы твердого α-раствора, а заканчивается кристаллизация при температуре t3 (точка b1). При этой температуре затвердевает последняя капля жидкого сплава. Разная температура конца кристаллизации сплавов свидетельствует о том, что состав твердой фазы непрерывно изменяется.

Типы кристаллических решеток металлов - student2.ru

Рис. 14. Диаграмма состояния сплавов медь-никель

Для построения диаграммы состояния (рис. 14, 6) на оси абсцисс сетки в координатах температура - концентрация откладывают (отмечают точками) составы пяти сплавов и восстанавливают из каждой точки вертикальные линии. После этого переносят на эти вертикальные линии с кривых охлаждения сплавов критические точки, а на левой и правой ординатах температур отмечают температуры кристаллизации чистых металлов - меди (100%) и никеля (100%). Соединив плавными кривыми температуры начала и конца кристаллизации всех сплавов, получают диаграмму состояния сплавов системы медь-никель с неограниченной растворимостью компонентов в твердом состоянии. Сплавы меди и никеля кристаллизуются и затвердевают в некотором температурном интервале. В пределах этого температурного интервала одновременно существуют две фазы: жидкий сплав и кристаллы твердого раствора - меди и никеля. На диаграмме этот интервал ограничен двумя линиями, соединяющими точки плавления чистых меди и никеля. Верхняя линия обозначает начало затвердевания при охлаждении или конец расплавления при нагреве, нижняя соответственно конец затвердевания или начало плавления. Рассмотренная диаграмма состояния сплава меди и никеля имеет три области. Область существования жидкого расплава лежит выше верхней линии, соединяющей точки плавления меди и никеля, а область существования кристаллических твердых растворов - ниже нижней линии. Между этими линиями находится двухфазная область, в которой одновременно существуют расплав и кристаллы твердого раствора. Верхнюю границу этой области называют линией ликвидус, а нижнюю - солидус («ликвидус» в переводе с латинского означает жидкий, «солидус» - твердый).

По этой же диаграмме состояния можно определить концентрации твердой и жидкой фаз в сплаве при его кристаллизации. Например, для сплава 3 при температуре t2 концентрация фаз определяется горизонтальной линией mn1, проведенной до пересечения с линиями солидус и ликвидус. Точка n1 показывает концентрацию твердой фазы, а точка m - концентрацию жидкой фазы. При температуре t3 концентрация твердой фазы определяется точкой b1 на диаграмме состояния, а концентрация жидкой фазы – точкой m1.

Из сказанного следует, что в процессе кристаллизации непрерывно изменяется состав фаз: жидкой по линии ликвидус и твердой по линии солидус. Кристаллы твердого раствора, выпадающие из жидкого при разной температуре, имеют переменный состав. Выросшие в первый момент кристаллизации, оси кристаллов обычно обогащаются тугоплавким компонентом (никелем), а междуосные пространства заполняются позже и обогащаются более легкоплавким компонентом (медью). Такую неоднородность отдельных кристаллов какого-либо сплава называют внутрикристаллической, или дендритной ликвацией. Дендритная ликвация тем больше, чем больше расстояние между линиями ликвидус и солидус.

Обычно это явление нежелательно и дендритную ликвацию предотвращают последующим длительным нагревом для выравнивания состава сплава, вследствие происходящего в нем диффузионного процесса.

К твердым растворам относят также сплавы систем Си-Аи, Ag-Аи, Ni-Аи, Fe-Cr, Fe-Va, Bi-Sb и др., кристаллизующиеся по рассмотренному типу диаграммы состояния, когда оба компонента неограниченно растворимы в жидком и твердом состояниях и не образуют химических соединений.

Наши рекомендации