Понятие о наклепе, текстуре деформации и анизотропии мех. св-в. Холодная пласт. деформация.
Упрочнение Ме при деформировании наз-ют наклепом. Наклеп Ме увел-ся до момента разрыва образца, хотя растягивающ. Нагрузка изменяется от Рmax до Рк. Это объясняется появлением местного утонения. В образце участки в которых сосредотачив. пластич. деформация. При значительности деформации в Ме появляется кристаллографическая ориентация зерен, кот наз-ся текстура деформации. Текстура деформации – это результат одновременного деформирования зерен по нескольким системам скольжения. Она зависит от вида деформирования, кристалич стр-ры Ме, наличия примесей и условий деформирования. При прокатке получ-ся более сложная текстура. В этом случае параллельно плоскости прокатки лежит кристаллогафич пл-ть и направление которой образует с напрвлением прокатки опред угол a. Текстура деформации делает Ме анизотропным. Анизотропия – различие св-в кристаллов в различн направлениях. Все св-ва, кот зависят от сил в/д атомов спр-ся кристаллограф направл. Анизотропия резче выражена в кристаллах с несиметричной крист решеткой. В этом случае зависит от направления натл-ся для всех св-св. В рез-те ХПД и тех явл происх гуменен .
Наклёп – это совокупность структурных изменений и связанных с ними св-в при холодной пластичной деформации.
В рез-те деф-ции зёрна выстраиваются (вытягиваются в направлении действующей нагрузки. Развивается анизотропия в металле. Под анизотропией понимают различие св-в по различным направлениям в металле. Выше св-ва в направлении пластической деформации (действующей нагрузки).
При холодной пластической деформации прочностные хар-ки (твёрдость, предел прочности и растяжений) увеличиваются в 2-3 раза, тогда как хар-ки пластичности (относит. удлинение, относит. сужение) снижаются 30-40 раз.
Упрочнение металлов при холодной пластической деф-ции обусловлена увелич. дефектов кристаллич. решётки (вакансий, дислакаций), увеличением числа дислокаций одного знака, а также увеличением угла разориентации м/у блоками.
Изменение стр-ры при дорекристаллизационном отжиге.
Пластическая деф-ция приводит к переводу металлов в неравновесное состояние, т.е. с повышенным запасом свободной энергии. Как и любая другая сис-ма металл стремиться к уменьшению свободной энергии. Это уменьшение протекает тем интенсивнее, чем выше тем-ра. В зав-ти от тем-ры отжига различают процессы возврата и процессы рекристаллизации.
Возврат.
Возврат явл-ся самой низкой температурной обработкой позволяющей воздействовать на структурные состояния деформированного металла. Различают две стадии возврата: низкотемпературную (отдых) и высокотемпературную. (полигонизация).
В процессе отдыха происходит перераспределение точечных дефектов. Перемещаются по кристаллу и дислокации, однако эти перемещения носят локальный хар-р. Дислокации различного знака встречаясь друг с другом взаимно аннигилируют, т.е. взаимоуничтожаются. Рез-ом этого являются некоторые снижения плотности дислокации. В процессе полигонизации происходит перемещение дислокации по кристаллу. Дислокации перемещ-ся хаотич. по объёму кристалла. Под воздействием тем-ры дислокации перемещаясь концентрир-ся в определённых участках стр-ры с образованием стенок и т.наз. полигонов.
После полигонизации происходит некоторый возврат св-в к св-вам металла до деф-ции.
Рекристаллизация.
После достижения опред. тем-р происходит изменение уже на микроскопическом уровне. Под микроскопом на фоне вытянутых зёрен можно наблюдать мелкие зёрна равноосной формы. По мере увеличения длительности отжига или повышении тем-ры происходит рост мелких зёрен за счёт вытянутых деформируемых зёрен. Образование и рост новых зёрен за счёт деформированных зёрен той же фазы наз-ся первичной рекристаллизацией или рекристаллизацией обработки.
При дальнейшем увелич. тем-ры и длительности отжига происходит «поедание» одними зёрнами других зёрен. Следствием явл-ся разнозёренность стр-р. В пределе можно достичь того, что стр-ра металла будет состоять только зи очень крупных зёрен. Это так наз. собирательная рекристаллизация. Тем-ра начала рекристаллиз. не явл-ся постоянной физ. величиной как, например, тем-ра плавления металла. Тем-ра начала рекристаллиз. будет зависеть от степени предварительной деф-ции металла, длительности процесса и ряда др. факторов.
Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=aTпл , а=0,2…0,6.
Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.
От размера зерна вообще и после рекристаллиз отжига в частности зависят св-ва металла. Чем мельче зерно, тем выше механические св-ва. Чем крупнее зерно, тем ниже мех-кие св-ва, но выше магн. или электр. св-ва. Поэтому, например, трансформаторную сталь после холодной деф-ции подвергают рекрист. отжигу с тем, чтобы как можно больший размер зерна можно было получить.
Холодная и горячая деформация.Холодная деф. проводиться при тем-рах ниже тем-ры рекристаллиз. и сопровождается наклёпом (наготовка).
Гор. деф. провод-ся при тем-рах выше тем-ры рекристаллиз. При горячей деф. наклёп не происходит поскольку этот наклёп сразу устраняется рекристаллизацией.
12. Сплавы - это вещества, состоящие из нескольких элементов, взятых в произвольных соотношениях. Сплавы получаются главным образом путем сплавления различных элементов в жидком состоянии, но могут быть получены и за счет диффузии в твердом состоянии, и путем совместной конденсации паров или другими способами. Компонентами сплава называют химические элементы или химические соединения, входящие в состав сплава. В зависимости от химической природы элементов, размера их ионов и типа кристаллической решетки компоненты могут растворяться друг в друге (ограниченно или неограниченно), могут быть нерастворимыми друг в друге или образовывать новые химические соединения. Отдельные однородные части сплавов, отделенные от других частей поверхностью раздела, при переходе через которую химический состав и свойства меняются скачком, называются фазами. Графическое изображение фазовых равновесий в зависимости от температуры и состава принято называть диаграммой состояния.
Как правило, в жидком состоянии компоненты сплавов хорошо растворяются друг в друге. При понижении температуры и кристаллизации из жидкой фазы выделяются твердые фазы, которые могут быть твердыми растворами либо чистыми компонентами. Твердые растворы бывают трех видов: замещения, внедрения и вычитания. Твердыми растворами замещения называют фазы, в которых часть узлов кристаллической решетки заполнены атомами одного сорта, а часть узлов атомами другого сорта. Твердые растворы замещения могут быть ограниченными и неограниченными (непрерывными). Твердыми растворами внедрения называют фазы, в которых атомы растворенного компонента внедрены между атомами второго компонента - растворителя. Твердые растворы внедрения всегда ограниченны. Твердыми растворами вычитания называют фазы на основе химических соединений. В кристаллических решетках таких сплавов часть узлов не занята атомами того или иного сорта, то есть часть атомов как бы вычтена из кристаллической решетки, и в вместо них в решетке остаются вакансии.
Фазовые превращения:
Наиболее важными из фазовых превращений являются:
· кристаллизация - переход жидкой фазы в твердую;
· конденсация - переход газообразной фазы в твердую;
· превращения структуры в твердом состоянии (изменение типа решетки - полиморфные превращения, изменение растворимости фаз при изменении температуры, мартенситное превращение, упорядочение твердых растворов и так далее);
· изменение плотности дислокаций и размера зерен при нагреве деформированных материалов.
Любое фазовое превращение можно рассматривать как результат развития двух процессов: образования зародышей новых фаз и рост этих зародышей. Любое фазовое превращение можно рассматривать как результат развития двух процессов: образования зародышей новых фаз и рост этих зародышей.Термодинамической движущей силой любого фазового превращения является стремление системы к уменьшению свободной энергии F или изобарно-изотермического потенциала G.
15. Построение диаграмм состояния сплавов ,Критические точки, Изотермы свободной энергии.
Диаграммы состояния строятся в координатах t-оси ординат и концентрация компонентов – ось абсцисс. Линия АДВ – линия ликвидус. а представляет собой геометрическое место точек соответствующих температурам, при которых из жидкости начинают выпадать кристаллы, следовательно выше линии ликвидус сплав находится в жидком состоянии. Линия СДЕ называется солидус. Она представляет собой геометрическое место точек, соответствующих температурам, при которых жидкая фаза исчезает, следовательно ниже линии солидус сплав находится в твердом состоянии. Между линиями ликвидус и солидус сплав находится в жидко- твердом состоянии, и чем ниже температура относительно линии ликвидус, тем больше кристаллов и меньше жидкой фазы в сплаве. В точке Д из жидкости одновременно начинают выпадать кристаллы компонентов (фаз). Для диаграмм этого типа компонент и фаза являются синонимами. Для диаграмм другого типа необходимо говорить только о фазах, поскольку компонент и фаза не являются синонимами. Механическая смесь, состоящая из двух или более фаз, одновременно кристаллизующаяся в жидкости называется эвтектикой. Ниже точки Д на диаграмме структура представляет собой чисто эвтектической.
Правило отрезков.
Посредством правила отрезков можно определить состав фаз в любой двухфазной области и количественное их соотношение. Правило отрезков состоит из двух частей. Первая часть: для того чтобы определить состав фаз через заданную точку в двухфазной области (точка соответствует конкретной температуре) проводят горизонтальную линию до пересечения с линиями, ограничивающими эту область. Проекция точек пересечения на ось концентрации даст нам состав фаз. Вторая часть: для того чтобы определить количество фаз через заданную точку проводят горизонтальную линию до пересечения с линией, ограничивающей эту область. Отрезки между заданной точкой и точками с соответствующим составом фаз обратно пропорциональны их количеству. Правило фаз действует только в двухфазной области.
16.Диаграмма состояния сплава с неограниченной растворимостью компонентов в твердом состоянии. Дендритная ликвация.
Диаграммы состояния показывают изменения фазового состояния сплавов при изменении их состава и температуры, а также позволяют предсказывать свойства сплавов. Связь между составом сплава и его свойствами для различных типов диаграмм состояния впервые была установлена Н. С. Курнаковым и получила название закономерностей Курнакова.
При изоморфности кристаллических решеток, близости строения валентных электронных оболочек атомов и малой разнице в размерах атомов в твердом состоянии элементы образуют неограниченные твердые растворы.
Диаграммы состояния и зависимость свойств от состава для случаев:
а), б) неограниченной растворимости компонентов в твердом состоянии;
в), г) отсутствия растворимости компонентов в твердом состоянии;
д), е) ограниченной растворимости компонентов в твердом состоянии.
Верхняя линия на диаграмме состояния представляет собой геометрическое место точек начала кристаллизации или конца плавления - линию ликвидус. Выше этой линии все сплавы находятся в однофазном - жидком состоянии. Нижняя линия является геометрическим местом точек конца кристаллизации или начала плавления - линия солидус. Ниже этой линии все сплавы также в однофазном - твердом состоянии.
Когда компоненты полностью не растворяются друг в друге в твердом состоянии и растворимы в жидком состоянии, показана на рис. в). В данном случае линия ликвидус выглядит в виде ломаной, причем при некотором составе, называемом эвтектическим (от греческого слова эвтектикос - легкоплавкий), линия ликвидус касается линии солидус. Линия солидус представляет собой горизонтальную линию. Ниже линии солидус в сплава имеется две твердые фазы, являющиеся чистыми компонентами сплава. Поскольку компоненты не растворимы друг в друге, то свойства линейно меняются при изменении состава в соответствии с тем, как меняется количество фаз. Однако вблизи эвтектического состава наблюдается отклонение от линейного закона. Это связано с тем, что при кристаллизации эвтектических сплавов из жидкости одновременно выпадают две твердые фазы, и формируется мелкозернистая структура. Измельчение зерен ведет за собой увеличение электрического сопротивления и прочности эвтектических сплавов.
Ликвация – хим неоднородность состава в различных частях слитка. Дендритная ликвация - .хим неоднородность в пределах каждого дендрита.( В центре кристалла больше всего содержится твердых компонентов.Это измененим сотава внутри кристалла и наз дендритн ликв) Устраняется термообраб-кой и диффузионным отжигом (гомоденизация).
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
17. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой
Диаграмма состояния для двухкомпонентной системы, компоненты в которой образуют ограниченные твердые растворы, при этом в зависимости от типа диаграммы, диаграммы подразделяются на диаграммы с эвтектикой и диаграммы с перитектикой.
Диаграммы с эвтектикой: компоненты А и В. Фазы: жидкость a,b;a- твердый раствор компонента В в компоненте А;b - твердый раствор компонента А в компоненте В.
Линия АВС – ликвидус. ADCFB – солидус, т.к. компоненты вступают во взаимодействие в твердом состоянии с правой и с левой стороны диаграммы будут находиться так называемые области ограниченной растворимости.
Линия ДК- указывает на то, что растворимость компонента В в А увеличивается с повышением температуры. Растворимость В в А при комп. Температуре будет соответственна на диаграммы. При температуре плавления эвтектики точка Д на диаграмме. Противоположность растворимость компонента А в В не изменяется (линия FL) при комнатной температуре растворимость компонента А в В соответственна точке L при температуре плавления эвтектики в точке L. Горизонтальная линия DCF соответствует температуре, при которой происходит эвтектическая реакция.
Эвтектика – это механическая смесь двух или более фаз одновременно кристаллизующихся из жидкости. В точке С происходит чисто эвтектическая реакция, которая записывается как жидкость точки С распадается на a - твердый раствор точки Д и b - в точке F.
Кривые охлаждения.
С=К-Ф+1
С0-1=2-1+1=2 С1-2=2-2+1=1
Диаграмма с перлитом.
Компоненты А,В, жидкост, a,b.
В отличие от эвтектической реакции при перитектической реакции жидкость взаимодействует с кристаллами выпавшей фазы с образованием кристаллов новой фазы.
Диаграммы состояния и зависимость свойств от состава для случаев: а), б) неограниченной растворимости компонентов в твердом состоянии;
в), г) отсутствия растворимости компонентов в твердом состоянии;
д), е) ограниченной растворимости компонентов в твердом состоянии
Для систем сплавов с ограниченной растворимостью характерны диаграммы состояния, показанные на рис. д). В таких системах имеются две области существования фаз, представляющих раствор одного компонента в другом, и область существования смеси двух фаз. При составах, соответствующих областям существования твердых растворов на основе какого-либо компонента, изменения свойств аналогично изменению свойств в системах с неограниченной растворимостью компонентов, а в областях составов, соответствующих двухфазным смесям, изменение состава ведет к изменению свойств, характерному для систем с нерастворимыми в твердом состоянии компонентами
--------------------------------------------------------------------------------------------------------------------------------------
18.Диаграмма состояния сплавов, компоненты которых имеют полиморфные превращения.
19.Связь между типом диаграммы состояния и свойствами сплава.
Строение сплава определяет его св-ва,поэтому важно знать как будет изменяться строение при изменении температуры и состава сплава. Зависимость между структурой сплава,его составом и температурой определяется с помощью диаграммы состояния. Т.е. Диаграмма состояния (д.с.) представляет собой графическое изображение состояния сплава, показывает устойчивое состояние, (т.е. состояние ,которое при данных условиях имеет минимум свободной энергии,поэтому д.с наз-ют еще диаграммой равновесия. По д.с. можно определить для конкретного сплава температуру кристаллизации и превращений в твердом состоянии при заданной темп-ре, что позволяет примерно определить механические, физич и др свойства сплава; и справедливо назначить режимы т.о.(термоообраб),ОМ2,сваркой и т.д. Д.с. строятся по критическим точкам,полученным на кривых охлаждения сплавов данной системы. Критические точки при етом стараются получить при оч медленном нагреве или охлаждении,т.е. почти в равновесном состоянии.
--------------------------------------------------------------------------------------------------------------------------------------
20.Упругая и пластическая деформация. Механизмы пластической деформации.Под воздействием приложенных из вне нагрузок металлы могут деформироваться в упругой области (без остаточных явлений), а именно без изменения размеров и деформироваться пластически, когда изменяется форма и размеры деформируемого металла.
Упругая деформация характеризуется двумя модулями: модуль Гука (модуль нормальной упругости) и модуль Юнга (модуль касательной упругости). В модуле Гука атомы стремятся по нормали, во втором случае – по касательной.
Естественно, учитывая силы межатомного взаимодействия, модуль Гука будет в несколько раз больше модуля Юнга и они не являются структурно-чувствительными свойствами.
Пластическая деформация может проходить по двум механизмам: скольжения и двойникования.
При реализации механизма скольжения часть кристалла смещается по отношению к другой под воздействием напряжений, превышающих критическую величину.
При чем это скольжение осуществляется по так называемым плоскостям скольжения. Каковыми являются плоскости наиболее упакованные атомами.
Деформация по механизму двойникования заключается в смещении одной части кристаллов в зеркальное отражение по отношению к другой по, так называемым, плоскостям двойникования. Точнее в этом случае смещение происходит за счет разворота части кристаллической решетки.
Деформация двойникования также как и скольжения осуществляется при прохождении дислокации через кристалл. Практически любой металл деформируется сразу по двум механизмам с преобладанием какого-либо одного.
--------------------------------------------------------------------------------------------------------------------------------------
21. Горячая деформация слитка.Влияние горячей пластической деформации на структуру и свойства металла.
Холодная деф. проводиться при тем-рах ниже тем-ры рекристаллиз. и сопровождается наклёпом (наготовка).Гор. деф. провод-ся при тем-рах выше тем-ры рекристаллиз. При горячей деф. наклёп не происходит поскольку этот наклёп сразу устраняется рекристаллизацией.
Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=a*Tпл , а=0,2…0,6.
Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.От размера зерна вообще и после рекристаллиз отжига в частности зависят св-ва металла. Чем мельче зерно, тем выше механические св-ва. Чем крупнее зерно, тем ниже мех-кие св-ва, но выше магн. или электр. св-ва. Поэтому, например, трансформаторную сталь после холодной деф-ции подвергают рекрист. отжигу с тем, чтобы как можно больший размер зерна можно было получить.
--------------------------------------------------------------------------------------------------------------------------------------
22. Деформационное упрочнение поликристаллов.
23.Компоненты,фазы и структурные составляющие в системе Fe-C (Fe-Fe3C)
выше линии АБСД-жидкость, Ф – феррит, А-аустенит, Ц – цементит, П – перлит, Л – ледобурит (эвтектика,А+Ц,при низк температурах П+Ц). Компонента 2: жидкость + С, L+ Ц;
фазы: L, Ф, А, Ц, графит, П – эвтектоид (Ф+Ц,перлит)
Вид линий диаграммы Fe-Cзависит от типа образующихся в процессе кристаллизации фаз и от того,какие превращения происходят при охлаждении твердого сплава. Поск-ку С обладает способностью в атомарном виде размещаться в крист решетке железа, то при затвердевании расплава могут образовываться твердые растворы внедрения на основе решеток 2х высокотемпературных модификаций железа: δ-Fe, (гамма) γ- Fe . Если углерода меньше 0,5 %,то в начале из расплава кристализ-ся δ – твердый раствор, который при последующем охлаждении перекристализ-ся в γ-тверд раствор. В сплавах, содержащих больше 0,5 % ,но меньше 4,3 %, из расплава сразу кристалл-ся γ-тверд раствор. Поскольку он так же как и δ – твердый раствор не может существовать при низких температурах,то γ-тверд раствор при охлаждении превращается в твердый раствор α (альфа). Т.о. сплавы железа с углеродом могут существовать кристаллы 3х тверд растворов: δ,γ и α, образующихся на основе 3х аллотропических модификаций чистого железа. Алоферрит тверд наз-ся ферритом и содержит больше 0,025 % углерода при темп 727 градусов. По своим св-вам он близок к чистому железу. γ-тверд раствор наз-ся аустенитом и он может содержать в себе до 2,14 % углерода. Помимо тверд раст-ров железа и углерода образуется тверд хим соед-ния Fe3C –карбид железа (цементит).
--------------------------------------------------------------------------------------------------------------------------------------
24 25. Диаграмма состояния железо-цементит (Fe-Fe3C)
Ж+F – ферритная область.
F+A – ферритная + аустенитная.
Л – ледебурит
ЦI – цементит первичный.
Железо – металл, плавящийся при температуре 1539оС и относящийся к полиморфным.
Полиморфизм – это возможность существования металлов в различных кристаллических модификациях.
В интервале 1539 оС – 1392 оС железо имеет ОЦК решетку.
В интервале 1392 оС – 911 оС железо имеет ГЦК решетку.
При температуре менее 911 оС железо имеет ОЦК решетку.
При температуре 768 оС железо из ферромагнитного переходит в паромагнитном состояние, т.е. становится немагнитным. Это т.н. точка Кюри.
Железо сравнительно мягкий металл: sв=250 МПа, НВ 80.
Цементит – химическое соединение, отвечающее формуле Fe3C. Образуется при строго определенном количестве атомов Fe и C, причем доля C составляет 6,67%. Цементит является наиболее твердой фазой железоуглеродистых сплавов (НВ 800). При нагреве в определенных условиях цементит может распадаться с образованием железа и углерода в свободном состоянии в виде графита. Способность цементита к разложению положена в основу получения чугунов.
На диаграмме состояния железа-цементит линия ABCD – линия липидус, а AHIECF – солидус.
На диаграмме состояния есть две области, прилегающие к ординате, на которых откладывают температуру компонента железа, область феррита и область аустенита. Вообще на диаграмме можно выделить 4 фазы: жидкость, феррит, аустенит и цементит.
Феррит – твердый раствор углерода в a-железе. Феррит имеет ОКЦ решетку. Чисто ферритные области: AHN (1539 оС – 1392 оС) (высоко температурный феррит) и AGPQ (911 оС и до комнатной).
Аустенит – твердый раствор углерода в g-железе. Имеет ГЦК решетку. Область чистого аустенита MIESG.
На диаграмме видно три горизонтальных линии, при температуре которых протекают нонвариантные рекации (С=0).
По линии HIB при Т=1499 оС протекает перитектическая реакция, в результате которой жидкость состава точки B взаимодействует с кристаллами феррита в точке Н с образованием кристаллов аустенита в точке I.
По линии ECF при Т=1147 оС протекает эвтектическая реакция, в результате которой жидкость в точке C распадается на аустенит в точке E и цементит. Механическая смесь аустенита и цементита в интервале T=1147 оС – 727 оС получила название ледебурит.
По линии PSK при Т=727 оС протекает эвтектоидная реакция, в результате которой аустенит в точке S распадается на феррит в точке P и цементит. Механическая смесь феррита и цементита получила называние перлит.
Эвтектика отличается от эвтектоида тем, что первая протекает с участием жидкой фазы. Вторая является результатом распада твердого раствора. В связи с тем, что при температуре меньше 727 оС аустенита быть не может, ледебурит видоизменяется и в интервале T=727 оС – 20 оС ледебурит – механическая смесь из перлита и цементита.
На диаграмме видны линии ограниченной растворимости (PQ и SE).
При Т=20 оС количество углерода, способного раствориться в ОЦК решетке феррита составляет 0,01% (в точке Q). При Т=727 оС количество углерода, способного раствориться в ОЦК решетке феррита составляет 0,02% (в точке P). Следовательно, при охлаждении избыток атомов углерода должен выделиться из ОЦК решетки, но не в чистом виде, а в виде цементита третичного. Аналогичное наблюдается и при растворении углерода в ГЦК решетке, если при Т=727 оС (точка S) углерод составляет 0,8%, то при Т=1147 оС (точка Е) – 2,14%. При охлаждении избыток атомов углерода должен выделиться из ГЦК решетки, но не в чистом виде, а в виде цементита вторичного. По химическому составу цементит первичный, вторичный и третичный не отличаются. Это для того, чтобы отличить цементит, выделившийся из жидкости, из аустенита и из феррита.
Сплавы железа с углеродом с содержанием углерода до 2,14% называют сталь. Стали подразделяются на доэвтектоидные, с содержанием углерода до 0,8% (феррит + перлит), эвтектоидные – 0,8% (перлит), заэвтектоидные –от 0,8% до 2,14% (перлит + цементит II). Сплавы железа с углеродом с содержанием углерода более 2,14% называют чугунами: доэвтектоидные –от 2,14% до 4,3% (перлит + ледебурит + цементит), эвтектический –4,3% (ледебурит), заэвтектический – от 4,3% до 6,67% (ледебурит + цементит I).
по лекции: Линии,образующие треуг-ки в левом углу связана с аллотропическим превращением железа и перекристализ-ей δ – тверд раствора в γ-тверд раствор. эта фаза-переход не играет почти никакой роли при тех обработке стали. Диагр сост-я Fe – Ц представляет собой как бы 2 совмещенные и немного сдвинутые одна относит-но другой диаграммы с ограниченной растворимостью. Верхняя диагр относится к процессам первичной кристал-ции выше линии ЕСF, а ниже – к процессам вторичной крист-ции, т.к. эти процессы происходят в тверд состоянии. Поск-ку С способен растворяться в решетке γ-Fe до 2,14 %,то при кристалл-ции жид сплавов,содержащих не более 2,4 % углерода, из жид-сти будут появляться кристаллы трерд раствора аустенита γ-Fe различной концентр-ции в зависимости от состава сплава. Линии ВС будет соответствовать началу кристалл-ции аустенита,а линия JЕ – концу кристалл-ции. При концентрации сплава более чем 2,14% С, т.е. правее точки Е, избыточный С уже не может размещаться в крист-кой решетке железа; образует кристаллы Fe3C. Т.о для сплавов,расположен-х правее т-ки Е, в результате кристалл-ции должна появл-ся мех смесь аустенита и цементита.Если состав сплава будет точно соответствовать 4,3% С, то при крист-ции при t=1147 одновременно будут возникать кристаллы аустенита и цементита,образуя эвтектическую смесь,наз-мую ледебуритом. Кристал-ция сплавов,лежащих по составу между точками Е и С, начнется с образования аустенита. В процессе охлаждения состав как жидкой так и твердой фазы будет меняться и при достижении t=1147 линии ЕСF состав жидкости будет соответствовать 4,3% С.а тверд фаза аустенита – 2,14%. Это положение справедливо для любых сплавов из линии ЕСF. На линии солидус ЕСF из жидкости будет кристаллизоваться ледебурит. Аналогично будет происходить кристалл-ция сплавов,лежащих правее тоски С ,с той лишь разницей,что вместо аустенита будет выделяться Цементит1; состав жид-сти будет меняться по кривой ДС, и при достижении t=1147 из оставш-ся жид-сти будет о5 кристал-ся ледебурит.Линия ЕСF наз эвтектической линией.
Сплавы железа и С, содержащие с менее чем 2,14% С, наз-ся сталями. Все стали при высокой температуре имеют структуру аустенита и, ввиду его хорошей пластичности, стали обабатыв-ся давлением.Если содержание С будет больше,чем 2,14%, то в струк-ре появл-ся хрупкая ледебуритная эвтектика, и обработка давлением обычными способами становится невозможной.Но существуют способы…Понижение температуры вызывает ряд превращений аустенита,вследствие которых он перестает существовать. Превращения происходят по-разному ,в зависимости от содержания С в сплаве.Если сталь содержит менее,чем 0,8 %,т.е. правее точки S , то при охлаждении до температуры,соответствующей линии GS, начинается перекристал-ция аустенита с образованием зерен перлита. Точка G на температурной оси чистого железа (911 градусов) соответствует температуре аллотропического превращения γ-Fe в α-Fe.Увеличение конц-ции С снижает температуру аллотропического превращения. По мере охлаждения сплавов кол-во феррита увелич-ся , а аустенита-уменьшается. Одновременно увел-ся концентр-ция С в аустените,что можно определить,используя правило отрезков;Но при этом увел-ся так же и соед-ние С и в феррите до 0,025%. Содержание С в аустените (А) будет 0,8%,а в феррите (Ф) – 0,025%.В А с С 0,8% при охлаждении до 727 гр одновременно происходит образование Ф, вследствие аллотропного превращения и образование Ц.Поск-ку С уже не может находиться в решетке железа в прежнем количестве,то образование смеси Ф и Ц происходит по тем же законам,что и эвтектические смеси, с тем же различием,чтов данном случае эта дисперсная механич смесь разнотипных кристаллов возникает из тверд,а не из жидкого состояния,поэтому такая мех смесь наз эвтектоидом. Эвтектоид,состоящий из мех смеси Ф и Ц, наз перлитом. Т.о образом происходит превращение и для сплавов, содержащих > чем 0,8%С, за исключением сплавов,лежащих левее точки Р,т.к. в етой области содержание С не превышает 0,025% и струк-ра будет представлять из ся Ф. При температуре ниже 727 гр РQ из перлита будет выделяться ЦIII 1%. Подобным образом превращения будут происходить в сплавах,лежащих правее точки Е. При охлаждении сплавов с 1147 до 727 гр концентр-ция С в избыточном А, не входящем в эвтектику и в А эвтектичного состава, будет изменяться в соответ-вии с линией ЕS, в результате чего образ-ся кристалл ЦII, а концентрация С снизится до 0,8% при 727гр,т.е. А приобретает перлитную конц-цию и превращ-ся в эвтектоид.На линии РSK 727гр образуется перлит и онаназ-ся перлитной линией. Точка С и S, в которых весь объем сплава превращается в эвтектику, наз-ся (С) эвтектической точкой и эвтектоидной (S).
Классификация сплава системы железо-Ц. Все сплавы данной системы делят на 3 большие группы: 1)технической железо;2)стали и 3)чугуны. Рассмотрим 2)стали – Fe с С, в котором содержание С больше предельной растворимости в α-Fe 0,025% и меньше его предельной растворимости в γ-Fe 2,14% между точками Р и Е. Принципиальное отличие технического железа от стали заключаеца в том,что в стали присутствует эвтектоидная смесь- перлит,а в тех железе его нет.
Стали в свою очередь делятся на 3 группы: 1)0,025-0,8% - в структуре присутствует Ф+П (доэвтектоидные стали); 2) 0,8% С , структура- чистый П (эвтектоидные стали); 3) 0,8-2,14 %, состоит из П и ЦII (заэвтектоидные стали).
--------------------------------------------------------------------------------------------------------------------------------------
25. 3)чугуны – сплавы Fe с С , в которых соединение С больше его растворимости в γ-Fe,т.е. все что правее точки Е. принципиальное отличие чугунов от стали заключается в том,что в их струтуре находится эвтектоидная смесь- ледебурит, а в стали – нет. Исключение: в некоторых сталях содержане С м.б. больше 2,14%, - это стали ледебуритного класса.
Чугуны так же делятся на 3 группы: 1)2,14-4,3% С – состоит из П+Л -(доэвтектические); 2)4,3% С – только Л (ледебурит) – (эвтектические) самые легкоплавкие; 3)больше 4,3 % С – содержит ЦII+Л – (за