Холодная и горячая обработка металлов давлением (деформация)
Описанный выше механизм формоизменения металлических монокристаллов и поликристаллов возможен только при определенных температурных условиях, при которых температура деформирования обычно ниже 0,3Тпл (К) (абсолютная температура плавления). При температурах деформирования выше 0,3Тпл (К) механизм пластической деформации усложняется такими явлениями, как возврат, рекристаллизация, изменение термической пластичности. На процессы деформирования большое влияние оказывает скорость деформирования, так как от нее зависят пластичность металлов и сплавов и степень протекания процессов возврата и рекристаллизации в процессе самой деформации и после нее.
Степень разупрочнения зависит исключительно от температурно-скоростных условий деформации. Действительно, степень разупрочнения, обусловленная возвратом и рекристаллизацией, для заданного сплава тем больше, чем выше температура деформации, чем меньше скорость деформации, чем больше тепловой эффект и, наконец, чем больше скорость разупрочняющих процессов. Чем больше время протекания этих процессов, т.е. чем меньше скорость деформирования, тем выше эффект разупрочнения.
1. Холодная обработка давлением осуществляется при температуре деформирования не только ниже температуры рекристаллизации, но и ниже температуры возврата, т.е. Tдеф < Tвозв .
В процессе деформирования отсутствуют возврат и рекристаллизация, поэтому эффект упрочнения при этом виде деформирования достаточно высок.
Таким образом, при холодной пластической деформации:
- образуется наклеп, материал существенно упрочняется, изменяются его физико-химические свойства, структура текстурирована;
- степень деформации ограничена, при ее превышении материал разрушается;
- требуются большие нагрузки (напряжения) и мощность оборудования.
Иногда холодная пластическая деформация используется как способ дополнительного упрочнения металлов и сплавов.
2. Горячая обработка давлением осуществляется при температурах значительно выше температуры рекристаллизации, т.е. Тдеф> >Трек.
Ввиду происходящей при горячей обработке рекристаллизации во всем объеме деформируемого металла наклеп образуется и сразу же снимается в процессе самой деформации, а неравномерность конечной структуры по деформируемому объему металла может быть следствием только нарушения режима охлаждения металла после окончания деформации.
Для горячей пластической деформации характерны:
- наклеп, образующийся при деформации, сразу же снимается в процессе деформации, если скорость деформации относительно невелика, и после деформации в деформированном металле наклеп отсутствует;
- отсутствие ограничений по степеням деформации, отсюда вытекает пословица «куй железо пока горячо»;
- меньший в 5 - 15 раз предел текучести металлов и сплавов по сравнению с холодной деформацией, поэтому для осуществления деформации не требуется приложения очень больших сил и напряжений, мощность оборудования значительно меньше, чем при холодной пластической деформации;
- оптимальное сочетание структуры и свойств деформированных металлов и сплавов, особенно заметно это проявляется после горячей обработки литых заготовок и полуфабрикатов.
Горячая обработка металлов давлением широко применяется для производства заготовок и полуфабрикатов (трубы, уголки, швеллеры, рельсы, листовой и профильный прокат и т.д.)
В теории обработки металлов давлением рассматриваются и другие виды обработки.
Неполная холодная обработка давлением осуществляется при температуре деформирования выше температуры возврата, но ниже температуры рекристаллизации, т.е. Tвозв < Tдеф < Tрек .
Вследствие возврата происходит значительное снятие остаточных напряжений, благодаря чему сопротивление деформированию несколько снижается, повышается пластичность и уменьшается степень упрочнения.
Неполная горячая обработка давлением осуществляется при температурах незначительно ниже температуры рекристаллизации, т.е. Tдеф £ Tрек. В случае неравномерного по тем или иным причинам распределения деформаций в деформируемом объеме и малой скорости рекристаллизации последняя не успевает произойти во всем деформируемом объеме, поэтому структура металла неоднородна как в процессе деформирования, так и после охлаждения металла до комнатной температуры. Неравномерность структуры обуславливает и неравномерность прочностных и пластических характеристик по объему деформируемого металла после деформации.
Задание и методические рекомендации
1. Изучить основные теоретические положения и кратко их изложить по предложенной форме.
2. Установить зависимость твердости и прочности образцов от степени пластической деформация. Для определения зависимости НRВ = f (e, %) необходимо:
а) зачистить напильником торцевые поверхности образцов в специальном приспособлении и измерить их начальную высоту h0, мм;
б) подвергнуть образцы деформации на ручном гидравлическом прессе (давление по манометру Р = 0, 50, 100, 150 кгс/см2, при площади поршня
30 см2 это соответствует усилиям 0, 1500, 3000 и 4500 кгс);
в) измерить высоту h образцов после деформации;
г) определить степень деформации ;
д) измерить твердость образцов (НRB) деформированных с различной степенью деформации на твердомере Роквелла;
е) построить график зависимости НRВ = f (e, %). Сделать выводы.
3. Определить расчетным путем и экспериментально значения температуры начала рекристаллизации заданного сплава, сравнить их между собой:
а) рассчитать по формуле Бочвара температуру рекристаллизации для материала исследуемых образцов;
б) определить экспериментально температуру начала рекристаллизации. Для этого необходимо:
- зачистить напильником торцевые поверхности нескольких образцов в специальном приспособлении;
- подвергнуть деформации несколько образцов с одинаковой степенью деформации (давление по манометру Р = 150 кгс/см2), измерить твердость материала после деформации;
- выдержать в течение 30 мин образцы в печах с разной температурой (в интервале 100...700 °С), охладить образцы;
- измерить твердость образцов после нагрева, результаты занести в таблицу, построить график зависимости НRВ = f (t, °С). Начало резкого падения твердости соответствует температуре начала рекристаллизации.
Записать экспериментальную температуру начала рекристаллизации, сравнить ее с расчетной, объяснить результаты.
4. Определить критическую степень деформации сплава:
а) на испытуемые образцы (6 штук) нанести риски, отметив ими базовую длину (от 50 до 100 мм);
б) продеформировать образцы со степенью деформации e = 0, 3, 6, 9, 12, 15%;
в) провести рекристаллизационный отжиг образцов в течение 30 мин (выбрав температуру по рекомендации преподавателя);
г) выявить зерно после рекристаллизационного отжига путем травления;
д) замерить средний диаметр зерна в зависимости от степени
предварительной пластической деформации, данные внести в таблицу;
е) построить график зависимости среднего диаметра зерна dср, мм, от степени пластической деформации e, %. Определить критическую степень деформации (критическая степень деформации соответствует максимуму величины зерна, см. рис. 4.5).
Контрольные вопросы
1. Что представляют собой упругая и пластическая деформации металлов и сплавов?
2. Каков механизм пластической деформации путем скольжения и двойникования?
3. Как объяснить механизм скольжения в монокристаллах с точки зрения теории дислокаций?
4. Какие причины препятствуют перемещению дислокаций и объясняют природу упрочнения при пластической деформации?
5. Каковы особенности пластической деформации поликристаллических металлов и сплавов?
6. Какие изменения в структуре и свойствах металлов наблюдаются при пластической деформации? Что представляет собой наклеп, или нагартовка?
7. Как изменяются структура и свойства при нагреве деформированных металлов? Что представляет собой рекристаллизация, каковы ее виды?
8. Как можно определить температуру начала рекристаллизации?
9. Что называется критической степенью деформации?
10. Что представляют собой холодная и горячая пластические деформации? Какие виды деформации возможны еще?
Лабораторная работа № 5