Удаление примесей цветных металлов

Поскольку металлолом (обычно содержащий некоторое количество примесей цветных металлов) стано­вится основной составляющей метал-лошихты, содержание примесей цвет­ных металлов, которые переходят в металл из шихты, возрастает. Во мно­гих случаях, особенно при производ­стве качественных конструкционных сталей, присутствие даже сотых и ты­сячных долей процента нежелатель­ных примесей цветных металлов за­метно ухудшает свойства стали. Низ­кие температуры плавления и склон­ность ряда примесей к ликвации усугубляют положение.

В качестве иллюстрации приведем ре­зультаты проведенного ЦНИИЧМ сравне­ния состава канатной стали, полученной из обычной шихты и из шихты с использова­нием чистого по примесям губчатого железа:

Си Zn Sn As Sb
Губчатое 0,015 0,0009 0,0009 0,0005 0,0011 железо Лом 0,20 0,0045 0,0034 0,012 0,0021
Ni Co Mo Cr
Губчатое железо 0,007 0,0014 0,0013 0,02 Лом 0,13 0,011 0,015 0,08

Сравнение качества и механических свойств показало следующее: прочность, пластичность и результаты испытания про­волоки для канатов на перегиб и скручива­ние из стали, содержащей меньше примесей цветных металлов, оказались существенно выше.

Сталеплавильные процессы харак­теризуются окислительным характе­ром газовой фазы. По химическому сродству с кислородом примеси цвет­ных металлов можно расположить в следующий ряд: Bi, Cu, Pb, Sb, Ni, Co, W, Sn, Mo, Fe,Zn, Cr, Mn, V, Si, Ti, B, Zr, Al, Mg, Ca. Все элементы, разме­щенные справа от железа, в процессе плавки стали окисляются. По химическому сродству к кислороду и тем­пературе испарения примеси цветных металлов, поступающие в сталепла­вильные агрегаты вместе с металлоло­мом, можно разделить на четыре груп­пы:

1. Si, Al, Ti, Zr, В, V— обладают высоким химическим сродством к кислороду и окисляются до следов в первые периоды плавки.

2. Мп, Сг — химическое сродство к кислороду близко к таковому для Fe; эти элементы распределяются между шлаком и металлом в зависимости от активности их оксидов в шлаке.

3. Си, Ni, Sn, Mo, Co, W, As, Sb -химическое сродство к кислороду меньше, чем таковое у Fe; эти элемен­ты почти полностью остаются в стали в растворенном состоянии; удаление их из стали затруднительно.

4. Zn, Pb — удаляются из агрегата вследствие своей легкоплавкости и летучести. Во время плавления ших­ты цинк (температуры плавления 419,5 °С, кипения 906 °С) улетучива­ется, окисляется и удаляется с отходя­щими газами; встречаясь на пути со сравнительно холодными поверхнос­тями, оксид цинка на них конденси­руется. В результате при переработке цинксодержащей шихты (например, пакетов из кровельного железа, быто­вых отходов и т. п.) на поверхности насадок регенераторов и в боровах мартеновских печей, на трубках кот­лов-утилизаторов конвертеров и т. п. откладывается слой оксида цинка, снижая стойкость и футеровки, и обо­рудования.

Для исключения этих нежелатель­ных явлений необходима предвари­тельная высокотемпературная обра­ботка цинксодержащих отходов с од­новременным улавливанием цинка. Свинец (температуры плавления 327,4 °С, кипения 1750°С) или улету­чивается из агрегата при воздействии высоких температур (что вредно для здоровья), или, быстро расплавляясь, стекает вниз. Обладая при повышен­ных температурах высокой жидкоте-кучестью, он просачивается в малей­шие неплотности кладки. Образован­ные свинцом каналы могут привести к уходу металла через кладку. «Заражен­ная» свинцом футеровка может стать источником попадания свинца в ме­талл во время последующих плавок.

Решением проблемы может быть организация предварительного подо­грева лома.

Наиболее трудной задачей является удаление из металла элементов груп­пы 3. Такие элементы, как Ni, Co, Мо, W, Си, используют для легирования некоторых сталей. Если в перечне ма­рок, которые включены в заказ цеху, имеются стали, содержащие данные элементы, то, получив пробу металла с указанием на наличие этих элементов, можно выбрать соответствующую марку из общего пакета заказов. Если соответствующей марки в пакете зака­зов нет, то плавку или бракуют, или проводят выпуск с полученным содер­жанием этих элементов. Способы уда­ления их из стали не разработаны. Во многих случаях содержание в стали рядовых марок небольших количеств таких примесей, как Ni, Mo, Co, W, невредно (иногда даже полезно).

Постепенное, но неуклонное повы­шение содержания в стали меди, попа­дающей в металл вместе с ломом, сти­мулирует поиск методов ее удаления, поскольку медь ухудшает качество стали таких групп, как электротехни­ческие, инструментальные, пружин­ные, высокопрочные, для глубокой вытяжки и т. д. Эффективные пути и методы снижения содержания меди пока не разработаны. Одним из воз­можных вариантов является перевод содержащейся в металле меди в суль­фид. Источником серы может быть такой минерал, как пирротин (маг­нитный колчедан), состоящий в ос­новном из Fe1-nS (n = 0,1-0,2). При по­падании пирротина в сталеплавильную ванну при определенных условиях воз­можна реакция между сульфидом желе­за и растворенной медью с образовани­ем сульфида меди, который переходит в шлак: 2 [Си] + (FeS) = (Cu2S) + Fe. При этом возрастает содержание в металле серы, определяемое значени­ем коэффициента распределения серы удаление примесей цветных металлов - student2.ru s = (S)/[S] для данного состава шлака.

Таким образом, уменьшение содер­жания меди при этом методе обработ­ки сопровождается повышением со­держания серы, вследствие чего полученный после операции декупрации (удаления меди) металл должен под­вергаться обессеривающей обработке. Упомянутый способ на практике пока не используют, и задача разработки рациональной технологии декупрации остается нерешенной.

Не менее сложной задачей является организация удаления таких приме­сей, как As, Sn, Sb и др. Одним из пер­спективных путей является организа­ция продувки металла порошками (например, на основе извести и плави­кового шпата) в струе кислорода.

Интерес представляет способ рафи­нирования стали от примесей цветных металлов, основанный на использова­нии их испарения в вакууме. Возмож­ность и интенсивность испарения оп­ределяются давлением пара примеси /' над раствором

Pi=Pº iXiYi,

где Pº i — давление пара чистого элемента; xt и у/ — мольная доля и коэффициент актив­ности элемента в расплаве.

Значение давления пара колеблется в широких пределах. Например, дав­ление пара железа 13,3, марганца 2600, а цинка 5,3 • 106 Па. По возрастанию давления пара чистые элементы (при 1600° С) можно расположить в следу­ющем порядке: W, Та, Mo, Zr, В, V, Ti, Со, Fe,Ni, Si, Cr, Cu, Al, Be, Sn, Mn, Pb, Sb, Bi, Mg, Zn. Отсюда следует, что при выдержке металла под пони­женным давлением можно достичь уменьшения содержания (вследствие испарения) таких трудноудаляемых примесей, как Си, Sn, Pb, Bi и др. Действительно, удаление этих при­месей происходит (например, при ва­куумном переплаве). Обычно кон­центрации примесей цветных метал­лов невелики, поэтому парциальные давления пара р/ очень малы. Соответ­ственно для испарения необходимо обеспечить глубокий вакуум и дли­тельную выдержку, что при массовом производстве затруднительно. Однако и в случае обработки глубоким вакуу­мом больших масс металла при его внепечной обработке какое-то коли­чество примесей цветных металлов удаляется вследствие их испарения, особенно при дополнительном пере­мешивании расплава.

В целом же проблема рафинирова­ния стали от примесей цветных метал­лов еще ждет своего решения.

ГАЗЫ В СТАЛИ

В любой стали в некоторых количе­ствах содержатся элементы, в обыч­ных условиях являющиеся газами. К ним в первую очередь относятся кис­лород, азот и водород, в значительной степени влияющие на качество стали. Процесс, в результате которого газы оказываются в металле в атомарном, ионном состоянии или в виде хими­ческих соединений, в металлургичес­кой практике обычно называют про­цессом растворения газов в металле. Условно в этом процессе можно выде­лить несколько стадий: 1) массоперенос газа к поверхности металла; 2) ад­сорбция газа на поверхности металла; 3) переход через границу газ—металл; 4) диффузия газа в тонком непереме­шиваемом (диффузионном) слое жидкости; 5) массоперенос в толщу металла.

Лимитирующей стадией процесса растворения газов в металле, как правило, является либо внешняя диффу­зия (подвод газа), либо внутренняя диффузия (массоперенос в металле). Иногда лимитирующим является ад-сорбционно-кинетическое звено (ад­сорбция на поверхности и переход че­рез граничный слой). Чаще лимитиру­ет процесс растворения газов внутри-диффузионная составляющая, однако кроме железа и растворяющегося газа в металле всегда содержится большее или меньшее количество примесей. Если поверхностная активность тре­тьего компонента достаточна, он мо­жет существенно влиять на интенсив­ность перехода газа через границу газ—металл. Обычно под растворимо­стью газа понимают его количество, перешедшее в раствор в металле при нормальном парциальном давлении газа. Растворимость газов в металле сильно зависит от температуры. В со­ответствии с уравнением изобары Вант-Гоффа зависимость растворимо­сти газа sot температуры может опре­деляться следующим уравнением:

S= Сехр(-ΔH5/2RT),

где С—постоянная интегрированная; ΔH 5 — изменение энтальпии при растворении и об­разовании раствора данного газа; R — уни­версальная газовая постоянная; T—темпе­ратура.

С учетом логарифмической формы этого уравнения

lnS=lnC-bHs/2RT= =C-bHs/2RT*1/T

изменение растворимости газов гра­фически удобно представлять в коор­динатах InS— (1/T). В прямоугольных координатах зависимость InS от 1/Т обычно представляет собой прямую линию. В общем случае ΔHS одновре­менно зависит от изменения: 1) эн­тальпии диссоциации этого газа у по­верхности металла ΔH дис; 2) энтальпии растворения ΔH раст; 3) энтальпии вза­имодействия, которое может иметь место между растворяющимся газом и растворенными в железе примесями ΔH В3. В результате ∑ ΔH S= ΔH дис + ΔH раст+ ΔH В3

В зависимости от суммарного (ре­зультирующего) изменения энталь­пии ДЯ5 растворимость газов повыша­ется или понижается с повышением температуры металла (рис. 12.1). В случае растворения в чистом железе двухатомных газов установлена четкая связь между парциальным давлением р этих газов в атмосфере над распла вом и растворимостью газа в металле: S=K удаление примесей цветных металлов - student2.ru p.

удаление примесей цветных металлов - student2.ru

Рис. 12.1.Влияние температуры на раство­римость газов S:

1 — увеличение растворимости; 2— уменьшение растворимости

Это соотношение называют законом квадратного корня или зако­ном Сивертса (по имени ученого, ус­тановившего это соотношение). Со­гласно этому закону в процессе ра­створения двухатомные молекулы диссоциируют на атомы, например H2(г) → 2[Н], при этом константа рав­новесия

Кн=[Н]2Н2, [Н]= удаление примесей цветных металлов - student2.ru КНрН 2 = К` удаление примесей цветных металлов - student2.ru рН 2 .

Для реакции

N2(г) → 2[H]

КN=[N]2/PN2, [N]=К" удаление примесей цветных металлов - student2.ru p N2.

Если при растворении водорода или азота в металле образуются соеди­нения, содержащие более одного атома газа (например, ZrH2, TiH2, Si3N4 и т. п.), то закон квадратного корня не­действителен. Однако такие случаи являются исключением; они чаще все­го имеют место в конце плавки, после того как в металл вводят такие добав­ки, как цирконий, титан и др. Обычно по ходу плавки металл не содержит значительного количества гидридо- или нитридообразующих примесей; в заметных количествах содержится лишь углерод, а для железоуглеродис­того расплава закон квадратного кор­ня по водороду и азоту выполняется. В тех случаях, когда растворы газов в сплавах далеки от идеальных и связи между растворяющимися газами и же­лезом и его примесями настолько сильны, что образуются достаточно прочные соединения (гидриды, нит­риды, оксиды), соединения эти имеют общее название неметаллические

удаление примесей цветных металлов - student2.ru

Рис. 12.2.Изменение растворимости (погло­щения) газов в металле при образовании раствора (1) и химического соединения (2)

включения. Характер зависимости ра­створимости от давления газа Sr=f(pr) различен в случаях образова­ния раствора, близкого к идеальному, или химического соединения. При об­разовании соединения на кривой ра­створимости Sr — pr наблюдается пере­лом (рис. 12.2).

РАСТВОРЕНИЕ ВОДОРОДА

На основании данных об изменении растворимости водорода в железе (рис. 12.3) можно сделать следующие выводы: 1) растворимость водорода возрастает при повышении температу­ры и уменьшается при ее снижении; 2) растворимость в различных моди­фикациях железа неодинакова; 3) при переходе железа из жидкого состояния в твердое и из одного аллотропическо­го состояния в другое растворимость изменяется скачкообразно. В реаль­ных производственных условиях чис­тый водород Н2 в атмосфере практи­чески отсутствует, но всегда имеется какое-то количество паров Н2О в ат­мосфере и влаги в шихтовых и доба­вочных материалах. Эксперименталь­но установлено, что содержание водо­рода в металле по ходу плавки зависит от парциального давления Н2О в ат­мосфере: [H]=К' удаление примесей цветных металлов - student2.ru рн2О. При одинако­вой технологии выплавки содержание водорода в стали, выплавленной в пе­риод влажных летних дней, может быть выше, чем в период морозных зимних дней, когда атмосферная влажность существенно ниже. Ско­рость растворения газов в металле за­висит от многих факторов: агрегатно­го состояния и состояния поверхности металла, его кристаллической струк­туры, давления газов, температуры, от размеров молекул (атомов) растворя­ющегося газа.

Водород в жидком железе находит­ся в виде протона Н+, т. е. в виде час­тиц очень малых размеров. Скорость миграции таких частиц в расплавлен­ном железе очень велика. В жидком металле скорость растворения водоро­да выше, чем в твердом. В твердом со­стоянии проницаемость металлов для газов определяется кристаллической структурой металла. Например, удаление примесей цветных металлов - student2.ru -Fe

удаление примесей цветных металлов - student2.ru

Рис. 12.3.Растворимость водорода в жидком железе

более проницаемо для водорода, чем удаление примесей цветных металлов - student2.ru -Fe, так как полости, соединяющие соседние междоузлия (поры) в про­странственно-центрированной решет­ке удаление примесей цветных металлов - student2.ru -Fe, больше полостей в гранецент-рированной решетке удаление примесей цветных металлов - student2.ru -Fe (сами же поры, наоборот, шире в решетке удаление примесей цветных металлов - student2.ru -Fe, с чем и связана большая раствори­мость газов в железе этой модифика­ции, а также в сталях и сплавах, имею­щих аустенитную структуру). Нали­чие в стали различных примесей (уг­лерода, марганца, кремния и др.) изменяет растворимость газов в твер­дом и жидком металле, в частности в железе. Например, введение углерода приводит к понижению растворимос­ти в нем газов, так как углерод зани­мает то пространство в решетке желе­за, в котором могут размещаться ато­мы других неметаллов. Легирующие присадки, расширяющие область у-фазы, например титан, ванадий, хром, способствуют увеличению ра­створимости газов, поскольку в гране-центрированной решетке этой фазы возможность растворения газа повы­шается. Присадки, стабилизирующие a-фазу, например углерод, кремний, алюминий, приводят к уменьшению растворимости газов. Влияние приме­сей на растворимость водорода в рас­плавленных двойных сплавах железа показано на рис. 12.4.

По влиянию на растворимость во­дорода в жидком железе элементы-примеси металла можно разделить на три группы: 1) повышающие раство­римость водорода (титан, неодим, цирконий, торий, церий, лантан, ва­надий (до 6 %)) и образующие с водо­родом соединения, прочные при низ­кой температуре; 2) снижающие ра­створимость водорода удаление примесей цветных металлов - student2.ru

Рис. 12.4.Растворимость водорода в сплавах железо-легирующий элемент R при нор­мальном давлении и температуре 1600 °С

(углерод, кремний, алюминий) и имеющие в раство­ре более сильные связи с железом, чем связи водорода с железом; 3) слабо­влияющие на растворимость водорода (никель, кобальт, марганец, молиб-лен, хром); влияние этих элементов на растворимость водорода может прояв­ляться лишь при высоких их концент­рациях (высоколегированные стали).

РАСТВОРЕНИЕ АЗОТА

На основании данных об изменении растворимости азота в железе (рис. 12.5) можно сделать следующие выво­ды: 1) растворимость азота в удаление примесей цветных металлов - student2.ru - и удаление примесей цветных металлов - student2.ru -Fe возрастает при повышении температу­ры; 2) растворимость азота в удаление примесей цветных металлов - student2.ru -Fe при повышении температуры снижается, что объясняется снижением прочности нитрида Fe4N; 3) растворимость азота при переходе из жидкого состояния в твердое и из одного аллотропического состояния в другое резко изменяется; 4) растворимость азота в жидком же­лезе с повышением температуры воз­растает. Для процесса растворения азота в жидком железе характерны, по крайней мере, две стадии: 1) диссоци­ация молекулярного азота на атомы N2 → 2N — сопровождается поглоще­нием тепла и 2) растворение атомар­ного азота N → [N] — сопровождается выделением тепла. Поскольку ΔHцис> Δhраст, суммарный процесс протекает с поглощением тепла. При повышенных температурах наблюда­ется увеличение содержания азота в металле (например, при продувке тех­ническим кислородом с повышенным содержанием азота, в высокотемпера­турной зоне дуги при электродуговом обогреве и т. п.). При 1600 °С и p H2=0,1МПа растворимость азота в жидком железе близка к 0,044 %. При этих условиях азот образует с железом раствор, близкий к идеальному. Обра­зование нитридов железа (Fe4N, Fe2N) происходит в процессе охлаждения закристаллизовавшегося металла (в основном в области у?6)- По влия­нию на растворимость азота в жидком железе элементы-примеси металла можно разделить на две группы.

1. Образующие прочные нитриды (ванадий, ниобий, лантан, церий, ти­тан, алюминий). Эти элементы повы­шают растворимость азота в железе. Такие примеси, как хром, марганец, молибден, обычно нитридов не обра­зуют, но они характеризуются боль­шим химическим сродством к азоту, чем к железу, поэтому также заметно увеличивают растворимость азота.

2. Не образующие нитридов (угле­род, никель, медь, фосфор) или обра­зующие с азотом соединения, менее прочные, чем с железом (кремний). Эти элементы заметно снижают ра­створимость азота в железе.

удаление примесей цветных металлов - student2.ru

Рис. 12.5. Растворимость азота в жидком же­лезе

удаление примесей цветных металлов - student2.ru

Рис. 12.6.Растворимость азота в сплавах же­лезо—легирующий элемент R при нормаль­ном давлении и температуре 1600 °С

Влияние содержания примесей же­леза на растворимость в нем азота вид­но из рис. 12.6. При охлаждении ста­ли, содержащей азот, нежелательным является скачкообразное изменение растворимости. При быстром охлаж­дении азот не успевает выделиться и раствор становится пересыщенным. Процесс выделения избыточного азота протекает во время эксплуатации го­тового изделия и во многих случаях приводит к ухудшению свойств стали (старение и связанное с этим скачко­образное повышение прочности и по­нижение пластических свойств). Раз­меры частиц азота в металле значи­тельно больше, чем водорода, поэтому скорости диффузии азота в железе бо­лее низкие. Коэффициент диффузии водорода в жидком железе Dн = = (8,0 + 9,0) • 10~3 см2/с, тогда как для азота D n = 3,77 • 10~5 см2/с, т. е. ниже на два порядка, поэтому при сниже­нии давления (обработка вакуумом) водород удаляется из металла с боль­шей интенсивностью, чем азот.

Наличие в железе поверхностно-активных примесей заметно влияет на процессы растворения (и соответ­ственно выделения) азота. Так, напри­мер, кислород является поверхност­но-активной примесью. В результате присутствия в расплаве кислорода об­разуется богатый кислородом поверх­ностный слой, приводящий к сниже­нию скорости перехода азота через границу газ—жидкий металл, поэтому при малой степени раскисленное™ и небольшом перегреве металла над ликвидусом можно продувать сталь азотом без опасения получить чрез­мерно высокое его содержание. Иное развитие у процесса, когда металл хо­рошо раскислен либо когда в агрегате или в какой-то локальной зоне (на­пример, в зоне электрических дуг или в зоне подачи технического кислорода в ванну) имеют место заметные пере­гревы металла.

В среднем можно принять, что в кислородно-конвертерной среднеле-гированной стали содержится 0,002— 0,005 % N, в мартеновской стали — 0,004-0,008 % N и в электростали — 0,006-0,012% N.

РАСТВОРЕНИЕ КИСЛОРОДА

Кислород находится в жидкой стали в виде раствора и в виде оксидных не­металлических включений. При тем­пературе плавления в чистом жидком железе растворяется -0,17% кислоро­да. При повышении температуры ра­створимость кислорода в жидком же­лезе возрастает (рис. 12.7). Растворе­ние кислорода газовой фазы в жидком железе может быть описано схемой 0,5О→ [О], = [0], K=[0] удаление примесей цветных металлов - student2.ru pO2. Кон­станта К характеризует содержание кислорода, растворенного в металле, равновесное с О2 газовой фазы; она может быть выражена формулой

lg K=lg[0]/pO21/2 =-6100/T + 0,1245.

удаление примесей цветных металлов - student2.ru

Рис. 12.7.Растворимость кислорода в жид­ком железе при равновесии с чистым желе­зистым шлаком

При содержании кислорода, пре­вышающем предел его растворимости в жидком железе при данной темпера­туре, кислород взаимодействует с же­лезом по реакции Fe + [О] = (FeO), образуя обособленную фазу — вюстит. Содержание кислорода, раство­ренного в жидком железе, равновес­ное с вюститом, может быть описано уравнением

lg[O]Fe0 = -6320/T+ 2,734,

где [O](Fe0) —содержание кислорода в жид­ком железе, равновесное с вюститом, маc. %; T—температура.

Расчеты по этим уравнениям пока­зывают, что даже при очень низких парциальных давлениях кислорода в газовой фазе, соприкасающейся с жидким железом, происходит окисле­ние последнего с образованием вюсти-та. Экспериментальное исследование взаимодействия кислорода с расплав­ленным железом затруднительно, по­скольку равновесное давление газа очень низкое (10 -9 — 10 -10 МПа) и из­мерить его практически затруднитель­но'.

Растворимость кислорода в удаление примесей цветных металлов - student2.ru -Fe существенно ниже, чем в жидком железе. В интервале 1400—1500 °С lg[0]S-Fe = -17900/T+7,20. В удаление примесей цветных металлов - student2.ru -Fe растворимость кислорода выше, чем в удаление примесей цветных металлов - student2.ru -Fe, что объясняется перестройкой его кристаллической решетки из ОЦК в ГЦК. В удаление примесей цветных металлов - student2.ru -Fe, так же как и в удаление примесей цветных металлов - student2.ru -Fe, ра­створимость кислорода очень низка (рис. 12.8). При комнатной температу­ре растворимость кислорода в железе снижается до следов (< 10 -4 %). Урав­нение процесса 0,5О2→ [О] условно, так как практически во всех суще­ствующих сталеплавильных агрегатах давление кислорода всегда выше равновесного с жидким железом и идет реакция Fеж + 0,5О2 = (FeO). На двойных диаграммах Fe—О левый (железный) угол соответствует удаление примесей цветных металлов - student2.ru -фазе,

1 Обычно процесс растворения кислорода описывают в виде перехода 0,5О2(Г) -> [О].

удаление примесей цветных металлов - student2.ru

Рис. 12.8.Растворимость кислорода в железе

называемой вюститом (имеет прибли­зительный состав FeO). Фаза удаление примесей цветных металлов - student2.ru незна­чительно растворяет железо и в гораз­до большей степени растворяет удаление примесей цветных металлов - student2.ru -фазу, которая соответствует составу Fe3O4 и называется магнетитом.

Таким образом, величина [О], ха­рактеризующая растворенный в ме­талле кислород, является относитель­ной. В металлургической технике рас­пространение получил метод опреде­ления активностей растворенных в железе элементов, основанный на за­мерах э. д. с. цепи, на одном конце ко­торой находится металл, активность компонента в котором известна (так называемый электрод сравнения), на другом — исследуемый образец. Этот метод в настоящее время широко ис­пользуется для определения активнос­ти кислорода, растворенного в ме­талле. Замеряемое этим методом зна­чение э. д. с. элемента Е пропор­ционально отношению активностей кислорода в электроде сравнения a[O]c и в исследуемом расплаве а[О]. В соответствии с уравнением Нернста

E=-(RT/nF)ln(a[0]c/a[0]),

где n — число переноса заряда потенциалопределяющего процесса; F— число Фарадея.

В настоящее время метод определе­ния активности кислорода в металле a[О] широко используют на практике для контроля процесса плавки. С по­мощью выражения a[о] =f [О][О] ПРИ известном коэффициенте активности f[O] можно определить концентрацию кислорода, растворенного в металле (эту величину часто обозначают [О]раст). Полный количественный ана­лиз на кислород (например, методом вакуум-плавления) обеспечивает оп­ределение общего содержания кисло­рода в металле [О]общ. Разность [0]общ - [О]раст = [О]св характеризует количество кислорода, связанного в оксидные включения. Достоверность результатов разделения [О]общ на [0]раст и [О]св зависит от точности оп­ределения коэффициента активности f [0] При этом следует учитывать, что системы часто состоят не только из железа и кислорода. Как правило, в жидком металле растворены и другие элементы, которые имеют большее, чем железо, химическое сродство к кислороду. В итоге системы Fe-O-R (R — элемент, растворенный в жидком железе) характеризуются отрицатель­ными отклонениями от идеальности.

В сталеплавильных агрегатах на со­держание и активность кислорода по ходу плавки очень большое (как пра­вило, решающее) влияние оказывает углерод (рис. 12.9). Образующиеся в процессе взаимодействия углерода и кислорода пузыри СО выделяются из сталеплавильной ванны, создавая эф­фект кипения ванны. При содержании углерода <0,10% процесс кипения' ванны замедляется и углерод уже не определяет и не регулирует окислен-ность металла. Начинается проявление преобладающего влияния других фак­торов на уровень окисленности металла, и

удаление примесей цветных металлов - student2.ru

Рис. 12.9.Влияние углерода на окисленность металла в сталеплавильной ванне при ее ки­пении:

/— кривая равновесных концентраций [С] и [О]; //— область концентраций [С] и [О], фактически наблюда­емых в кипящей сталеплавильной ванне

прежде всего активности оксидов железа в шлаке. При отсутствии кипе­ния обычно соблюдается соотношение a(FeO)/a[O]= const: чем выше активность оксидов железа в шлаке, тем выше окисленность металла. В тех случаях, когда в ванну вводят добавки, содер­жащие элементы, обладающие боль­шим химическим сродством к кисло­роду, чем железо (например, кремний, алюминий, марганец), окисленность металла определяется уже уровнем ак­тивности этих элементов-раскислите-лей. Некоторые примеси (такие, как никель, молибден, медь), имеющие меньшее химическое сродство к кис­лороду, чем железо, повышают актив­ность кислорода в стали. При введе­нии в металл элементов-раскисли-телей в нем образуются оксидные неметаллические включения. После кристаллизации в твердой стали прак­тически весь кислород находится не в растворе, а в виде оксидных неметал­лических включений, образовавших­ся: 1) при введении раскислителей (и взаимодействии их с кислородом, ра­створенным в металле); 2) во время вы­пуска и разливки в результате повтор­ного окисления (кислородом воздуха); 3) из шлака, огнеупорной кладки; 4) по ходу плавки как результат поступле­ния в металл вместе с добавками; 5) при затвердевании стали (в результате вза­имодействия включений различного происхождения).

ИСТОЧНИКИ ГАЗОВ,

Наши рекомендации