Восстановление кремния и выплавка кремнистых чугунов
Кремний присутствует в рудах главным образом в виде кремнезема, а в агломерате - в виде силикатов железа и кальция и силикатов промежуточного состава - оливинов СаОх • FeO(2_x) • Si02. Сродство кремния к кислороду очень велико, поэтому он может восстанавливаться в печи только прямым путем по следующей реакции:
SiOj + 2С = Si + 2СО - 636760 Дж.
Точнее, эта реакция восстановления идет в две стадии с образованием промежуточного соединения -монооксида кремнияSiO(последнийявляется летучимисуществуеттолько при высоких температурах):
Si02 + С=SiO + СО
SiO + С = Si +СО
Si02 + 2C = Si + 2CO.
Термодинамический анализ показывает, что для протекания этой реакции в направлении слева направо нужна высокая температура - около 1500 °С. Вместе с тем установлено, что в доменной печи кремний восстанавливается при более низкой температуре. Это связано с присутствием железа: с твердым железом кремний образует силицид FeSi, a в жидком он растворяется; эти процессы протекают с выделением тепла и выводят кремний из зоны реакции, способствуя сдвигу равновесия реакции восстановления вправо. Так, лабораторные опыты показали, что реакция восстановления твердого Si02 с участием железа Si02+ 2C + Fe= FeSi + 2CO получает заметное развитие при 1200-1300 °С, а эта же реакция восстановления Si02 из шлака - при 1400-1550 °С.
В доменной печи при температурах 1200-1250°С уже сформирован жидкий шлак, и поэтому основная часть кремния восстанавливается прямым путем из Si02, находящегося в шлаке при стекании капель шлака в горн между кусками кокса.
Восстановление фосфора
Фосфор поступает в доменную печь в основном с агломератом и железными рудами в виде фосфата ЗСаО • P2Os и иногда 3FeO • P2Os • 8Н20.
Фосфат ЗСаО • P2Os интенсивно восстанавливается при температурах 1000-1200 °С и более с большой затратой тепла:
ЗСаО • P2Os + 5С = 2Р + ЗСаО + 5СО - 1634000 Дж, причем часть его восстанавливается из шлака.
Фосфат железа менее прочен и восстанавливается при 900-1000 °С газом СО и частично углеродом, например:
2(3FeO *Р205) + 16СО = 3Fe2P + Р + 16С02.
Образующиеся при этих реакциях фосфор и фосфид Fe2P активно растворяются в железе, и практически весь фосфор шихты переходит в чугун. Таким образом, единственным способом получения чугуна с низким содержанием фосфора является использование чистых по фосфору рудных материалов.
Восстановление других элементов
Представление о возможности восстановления элементов, «ходящих в состав доменной шихты, может быть получено на основании термодинамических данных, характеризующих прочность их оксидов, т.е. величину их химического сродства к кислороду. Элементы доменной шихты по возрастанию сродства к кислороду располагаются в следующем порядке: Си, As, Ni, Fe, P, Zn, Mn, V, Cr, Si, Ti, Al, Mg, Ca. Соответственно, степень восстановления элементов тем меньше, чем правее стоит элемент в приведенном ряду.
Такие элементы как никель, медь, мышьяк, подобно железу и фосфору, почти целиком восстанавливаются в печи и переходят в чугун.
Ванадий и хром восстанавливаются аналогично марганцу - соответственно на 70-80 и на 80-90%, а титан- аналогично кремнию. Степень восстановления титана ниже, чем кремния. Алюминий, магний и кальций в доменной печи не восстанавливаются.
Особо следует отметить поведение цинка. Он содержится В некоторых железных рудах, а также попадает в доменные печи в составе добавляемых в шихту железосодержащих отходов - конвертерных шламов, колошниковой пыли и др. Поступая в печь в основном в виде ZnO, он легко восстанавливается при температурах > 950 °С: ZnO + С = Zn + СО и, испаряясь, поднимается с газами вверх. В зонах с умеренными Температурами Zn вновь окисляется до ZnO, реагируя с С02 и оксидами железа. Часть ZnO (10-30%) уносится из печи доменным газом; часть в смеси с сажистым углеродом осаждается на стенках печи, образуя большие настыли; часть осаждается в швах и порах футеровки, вызывая увеличение ее объема и возможность разрыва кожуха печи; часть осаждается на кусках шихты, и опускается вниз, где вновь восстанавливается, создавая циркуляцию цинка в печи, способствуя его накоплению с увеличением вредных отложений.
Образование чугуна
Восстанавливаемое во всем объеме печи железо получается в твердом виде, поскольку температура его расплавления (1535 °С) выше температур, имеющихся в доменной печи; приэтом восстановленное из твердых кусков шихты железо полу чается в виде твердой губки. В условиях избытка углерода и СО губчатое железо растворяет углерод (науглероживается). Этот процесс получает заметное развитие уже при температурах 400-600 °С и заключается в том, что на поверхности губчатого железа, являющегося катализатором, происходит распад СО (2СО = Ссаж+СОг) и выделяющийся сажистый углерод переходит в железо, образуя раствор Fe + С = [С]
или карбид Fe3C
Fe + 3C=Fe3C.
По мере науглероживания температура плавления железа понижается (так температура плавления железа, содержащего 4,3 % С равна ИЗО °С), а само оно опускается в зоны с более высокими температурами. В определенный момент, когда температура плавления науглероженного железа становится равной температуре в печи, железо плавится (примерно при содержании углерода 2-2,5% и температуре около 1200 °С) и образуются капли жидкого металла, которые стекают в горн между кусками кокса. В жидком виде железо науглероживается еще более интенсивно - при контакте капель с раскаленным коксом и при контакте расплава с коксом в горне, происходит растворение углерода кокса в металле: Fe + Скокс = [С]ре.
В движущиеся капли металла и отчасти в еще твердое железо в небольших количествах переходят на разных горизонтах печи другие восстановленные элементы (кремний, марганец, фосфор и в некоторых случаях ванадий, мышьяк, хром, никель, медь), а также сера. Этот сплав железа с углеродом и другими элементами (чугун) скапливается в горне.
Таким образом, формирование чугуна из твердого восстановленного железа заключается в его науглероживании, расплавлении и растворении в нем других восстановленных элементов (обычно это марганец, кремний, фосфор и сера).
Окончательное содержание углерода в чугуне устанавливается в горне; оно не поддается регулированию и зависит от температуры чугуна и его состава.
Марганец и хром, Как карбидообразующие элементы, способствуют повышению содержания углерода в чугуне.
Кремний, фосфор и сера образуют с железом силициды, фосфиды и сульфиды, которые, являясь более прочными соединениями,чемкарбиджелеза,разрушаютего,способствуятемсамым снижению содержания углерода в чугуне. Увеличение температуры чугуна вызывает повышение содержания углерода в нем.