Технология сварки алюминия и его сплавов. Катодное распыление

Алюминий и его сплавы

Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru Общие сведения. Алюминий является одним из наиболее распространенных элементов в природе; он обладает малой плотностью, высокой электро- и теплопроводностью, высокой коррозионной стойкостью в окислительных средах и стойкостью против перехода в хрупкое состояние при низких температурах. Плотность алюминия 2,7 г/см3. Температура плавления 660° С. Алюминий имеет большое сродство к кислороду, поэтому всегда покрыт плотной пленкой окиси алюминия — Al2O3, температура плавления которой 2050°С. Тугоплавкая пленка окиси и возможность образования пор и кристаллизационных трещин в металле шва — основные трудности при сварке алюминия.
Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru Пленка окиси алюминия препятствует сплавлению металла сварочной ванны с основным металлом, ее удаление при сварке алюминия металлическими электродами достигается воздействием на нее составляющих флюса или покрытия электрода, а при аргоно-дуговой сварке — в результате катодного распыления. При сварке постоянным током обратной полярности «очищающее» действие тока происходит на протяжении всего периода горения дуги, а при сварке переменным током лишь в те полупериоды, когда изделие является катодом.
Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru Причиной образования пор в сварных швах является водород, который в связи с резким изменением растворимости при переходе алюминия из жидкого состояния в твердое, стремится выйти в атмосферу. Кристаллизационные трещины в сварных швах чистого алюминия возникают из-за повышенного содержания кремния и уменьшаются с введением в алюминий добавок железа.
Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru Ручная сварка угольным электродом. Сварку угольным электродом применяют при толщине металла от 1,5 до 20 мм и при заварке дефектов литья из алюминия и его сплавов. Металл толщиной до 2 мм сваривают беэ разделки кромок и присадочной проволоки. Для предупреждения попадания окисной пленки алюминия в металл шва применяют флюс АФ-4А.
Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru Ручная дуговая сварка металлическим электродом. Для сварки и наплавки деталей и конструкций из чистого алюминия А6, АД0, АД1 и АД применяют электроды ОЗА-1 и АФ-4аКР. Сварку ведут постоянным током обратной полярности при предварительном подогреве свариваемых листов: при толщине 6 — 8 мм до 200° С, при толщине 8 — 16 мм до 350 — 400° С.
Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru Электроды перед сваркой просушивают при температуре 150 — 200° С в течение 2 ч. Кромки разделывают при толщине металла более 20 мм. Сварку выполняют при зазоре между листами 0,5 — 1 мм с двух сторон. Для сварки алюминиевомарганцевого сплава типа АМц и устранения дефектных мест в литье сплава АЛ-9 предназначены электроды А-2. Сварка выполняется при предварительном подогреве до 300 — 400° С (АМц) и 280 — 300° С (АЛ-9) постоянным током обратной полярности короткой дугой. Для сварки сплавов АЛ-2, АЛ-4, АЛ-5, АЛ-9 и АЛ-11 предназначены электроды ОЗА-2. Сварку выполняют короткой дугой постоянным током обратной полярности при подогреве места сварки до 250 — 400° С.
Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru Ручная аргоно-дуговая сварка. Для сварки применяют аргон марок А и Б. Сварку выполняют вольфрамовым электродом на переменном токе. Удаление окисной пленки происходит в момент, когда изделие бывает катодом, т. е. вследствие катодного распыления. Если стыковые соединения выполняют без разделки кромок (при толщине металла до 4 мм), то ток подбирают по следующей формуле:

I = 50 • S

где I — сварочный ток, а;
Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru S - толщина металла, мм.

Технология сварки алюминия и его сплавов. Катодное распыление - student2.ru Металлы большой толщины сваривают с разделкой кромок слоями. Ток подбирают из расчета 35 — 40 а на 1 мм диаметра вольфрамового электрода.

Катодное распыление, ионное распыление, разрушение отрицательного электрода (катода) в газовом разряде под действием ударов положительных ионов. В более широком смысле — разрушение твёрдого вещества при его бомбардировке заряженными или нейтральными частицами.

К. р., с одной стороны, нежелательное явление, уменьшающее срок службы электровакуумных приборов; с др. стороны, К. р. имеет практическое применение для очистки поверхностей, выявления структуры вещества (ионное травление), нанесения тонких плёнок, для получения направленных молекулярных пучков и т.д. Бомбардирующие ионы, проникая в глубь мишени, вызывают смещение её атомов. Эти смещенные атомы, в свою очередь, могут вызывать новые смещения и т.д. Часть атомов при этом достигает поверхности вещества и выходит за её пределы. При определённых условиях частицы могут покидать поверхность мишени в виде ионов .В монокристаллах наиболее благоприятные условия для выхода частиц складываются в направлениях, где плотность упаковки атомов наибольшая. В этих направлениях образуются цепочки соударений (фокусоны), с помощью которых энергия и импульс смещенных частиц передаются с наименьшими потерями. Существенную роль при К. р. играет процесс каналирования ионов, определяющий глубину их проникновения в мишень

К. р. наблюдается при энергии ионов E выше некоторой величины E0, называемым порогом К. р. Значения E0 для различных элементов колеблются от единиц до нескольких десятков эв. Количественно К. р. характеризуется коэффициентом распыления S, равным числу атомов, выбитых одним ионом. Вблизи порога S очень мало (10–5атомов/ион), а при оптимальных условиях S достигает нескольких десятков. Величина S не зависит от давления газа при малых давлениях р < 13,3 н/м2(0,1 мм рт. ст.), но при р > 13,3 н/м2(0,1 мм рт. см.) происходит уменьшение S за счёт увеличения числа частиц, осаждающихся обратно на поверхность. На величину S влияют как свойства бомбардирующих ионов — их энергия Ei (рис. 1), масса Mi (рис. 2), угол падения ее на мишень (рис. 3), так и свойства распыляемого вещества — чистота поверхности, температура, кристаллическая структура, масса атомов мишени.

Угловое распределение частиц, вылетающих с распыляемой поверхности, анизотропно. Оно зависит от энергии ионов, а для монокристаллов также от типа кристаллической решётки и строения распыляемой грани. Осадок из распыляемого вещества, образующийся на экране, имеет вид отдельных пятен, причём симметрия картины осадка та же, что и симметрии распыляемой грани и образовавшихся на ней в результате К. р. фигур травления (рис. 4). Энергии распылённых частиц колеблются от нескольких долей эв до величин порядка энергии первичных ионов. Средние энергии распыляемых частиц составляют обычно десятки эв и зависят от свойств материала мишени и характеристик ионного пучка.

Источник: Электросварка. В. П. Фоминых А. П. Яковлев

http://tehinfor.ru/s_14/svarka_29.html

http://www.booksite.ru/fulltext/1/001/008/059/953.htm

Вопрос 31

Наши рекомендации